React Agent 自定义实现
目录
背景
langchin 中的 agent
langchin 中 agent 的问题
langchain 的 agent 案例
自定义 React Agent
大模型
工具定义
问题设定
问题改写,挖掘潜在意图
React Prompt
下一步规划
问题总结
代码
背景
之前使用过 langchian 中的 agent 去实现过一些案例,angchian 的 React Agent 是有问题的,且内部代码有点难看懂,所以自己来根据 React 思想,灵活来实现试一下。
可以先看看我自定义实现的逻辑图,后面详细说明:
langchin 中的 agent
langchian 中的几种 agent 怎么用,我都看过了,也整理了一下了,那些能用,那些有问题的可以看注释,代码链接:https://github.com/5zjk5/prompt-engineering
langchin 中 agent 的问题
先来说说我用过的发现的问题,就是它的 React agent 有点问题,只调用一个工具就结束了,详细实验的文章:langchain 的 agent + tool 使用_langchain agent tool-CSDN博客
想去看看代码到底怎么运行的,发现太难看懂了。
后面在我自己实现 React agent 的时候,突然发现,跟 prompt 关系挺大的,langchian 那个 prompt 应该是根据 openai 的去写的,这是我目前想到只能调用一个工具的原因。
langchain 的 agent 案例
GitHub - 5zjk5/prompt-engineering: prompt 工程项目案例
自定义 React Agent
大模型
用的智谱 glm-4-air,如果换了模型,效果还不太稳定,需要调 prompt。
工具定义
定义两个工具,一个是 tavily 的搜索,去官网开通账号就可以获得一个 api,免费调用 1000 次;
一个工具是根据名字查询身高的自定义函数
from tavily import TavilyClient
from llm.llm_api_key import TAVILY_API_KEY
import timedef tavily_search(query):try:# Step 1. Instantiating your TavilyClienttavily_client = TavilyClient(api_key=TAVILY_API_KEY)# Step 2. Executing a Q&A search queryanswer = tavily_client.qna_search(query=query)# Step 3. That's it! Your question has been answered!return answerexcept:time.sleep(1)# Step 1. Instantiating your TavilyClienttavily_client = TavilyClient(api_key=TAVILY_API_KEY)# Step 2. Executing a Q&A search queryanswer = tavily_client.qna_search(query=query)# Step 3. That's it! Your question has been answered!return answerdef height_search(name):height_dic = {"张三": 180,"李四": 175,"王五": 170,"赵六": 165,"钱七": 160,"孙八": 175,"周九": 170,"吴十": 165,"郑十一": 180,"王十二": 175,"李十三": 170,"赵十四": 165,"钱十五": 180,"孙十六": 175,}return height_dic.get(name)
工具描述,要让大模型理解工具,需要定义描述,这里参考的智谱官方的工具的描述写法:
tavily_search_tool = {"type": "function","function": {"name": 'tavily_search',"description": "根据用户查询,去搜索引擎,返回搜索结果","parameters": {"type": "object","properties": {"query": {"description": "用户搜索内容 query","type": "string"},},"required": ["query"]}}}height_search_tool = {"type": "function","function": {"name": 'height_search',"description": "只要是有姓名,身高关键字,都需要使用此工具根据姓名,查询对应身高,每次只能查询一个人的身高","parameters": {"type": "object","properties": {"name": {"description": "指具体的姓名或名字","type": "string"},},"required": ["name"]}}}
问题设定
设定一个问题:
这个问题潜在意图是查询钱七,李四身高,并且搜索大模型定义,是想调用身高查询工具 2 次,搜索工具 1 次。
问题改写,挖掘潜在意图
为什么加这一步呢?因为把问题传给大模型后发现一个问题,它可能发现不了潜在意图,例如这里潜在意图要查询身高,问题中没有明显提出,大模型思考结果:
这样的话就只使用搜索工具就结束了,所以加了一步问题改写,去发现潜在意图,是利用大模型能力去做的,用 prompt,改写结果成功识别出潜在意图,并思考出要调用哪个工具:
尽你所能改写以下问题,可以有多个答案,可以参照以下工具进行改写,识别用户潜在意图:
```{tools}```
Question:`{query}`
Answer 按照以下格式,每一点代表一个意图,如果需要用到工具的需要列出工具名字,不需要具体参数:
```
1.
2.
...
```
React Prompt
React agent 核心的 prompt 怎么让模型自动规划,先来看 langchain 中的写法:
Answer the following questions as best you can. You have access to the following tools:{tools}Use the following format:Question: the input question you must answerThought: you should always think about what to doAction: the action to take, should be one of [{tool_names}]Action Input: the input to the actionObservation: the result of the action... (this Thought/Action/Action Input/Observation can repeat N times)Thought: I now know the final answerFinal Answer: the final answer to the original input questionBegin!Question: {input}Thought:{agent_scratchpad}
传入变量 tool 为所有工具,tool_names 为所有工具名称列表,input 问题输入,agent_scratchpad 思考要做什么,怎么做。
参照进行改编:
尽你所能回答以下问题。您可以使用以下工具:
```{tools}```严格使用以下 JSON 格式:
```
{{Question: 根据 thought 当前需要回答的问题,此字段必须存在Thought: 对于 Question 要做什么,此字段必须存在Action: {{'tool': 要采取的动作,应该是[{tool_names}]之一,如果不需要工具可以空着}}Action Input: 动作的输入,是一个 JSON 格式,此字段必须存在,如果不需要输入可以空着Observation: 行动的结果,此字段必须存在,默认为空
}}
```
(Question/Thought/Action/Action Input/Observation 五个字段必须存在,以上步骤只能重复 1 次)开始吧!
Question:`{query}`
thought:`{agent_scratchpad}`
根据 agent_scratchpad 每次运行得到 json 的 action,接着提取工具名及参数,去进行工具调用,这里因为是 json,格式控制好了提取就方便了。
使用完工具后,把结果赋值给 Observation。
下一步规划
agent_scratchpad 就是下一步规划的思考,用 prompt 去进行规划,传给已经执行的 action,问题及思考,让自动规划下一步应该做什么:
# 背景
有一个问题 Question,已经有了对这个问题的思考 Thought,已执行的思考 Action,需要根据这些信息去规划出下一步应该做什么。# 输入
## Question:`{query}`
## Thought:`{thought}`
## Action:`{all_action_res}`# 思考推理:
- 1、参考 Question 仔细理解 Thought,思考 Action 还有哪些没有行动。
- 2、判断你下一步做什么行动,不能过于发散过多的行动,必须根据步骤 1 的思考。
- 3、确保你的回答在语义上与 Action 中的内容不重复是一个全新的步骤。
- 4、若 Thought 已经全部执行了,直接回答`no`。# 输出要求(严格按照以下要求输出)
- 回答需要用一句话清晰的总结下一步需要做什么,不需要其他任何信息。
- 如果没有需要做的了,直接输出`no`,不需要其他任何信息,不需要解释任何理由。
这里遇到一个问题,就是可能会一直重复规划,导致死循环,在代码中加了判断,理论上开始重复规划了,说明已经没有可以给出新的规划了,那就结束吧。
问题总结
所有 action 的结果,用了一个列表保存的,最后用大模型自己去总结去回答问题就可以了。
D:\programming\dev_env\anaconda\anaconda3\python.exe "D:\Python_project\NLP\大模型学习\prompt-engineering\自定义 React Agant\run_agent.py"
D:\programming\dev_env\anaconda\anaconda3\Lib\site-packages\langchain\callbacks\__init__.py:37: LangChainDeprecationWarning: Importing this callback from langchain is deprecated. Importing it from langchain will no longer be supported as of langchain==0.2.0. Please import from langchain-community instead:`from langchain_community.callbacks import get_openai_callback`.To install langchain-community run `pip install -U langchain-community`.warnings.warn(
输入 token:103/输出 token:268/总共 token:371/
问题改写,识别潜在意图:
1. 识别用户提到的“身高比较高的小伙子”和“长得像钱七”,可能需要查询钱七的身高信息(使用工具:height_search)。
2. 识别用户提到的“还有他跟他身高差不多的兄弟李四”,可能需要查询李四的身高信息(使用工具:height_search)。
3. 用户对“大模型”表示不清楚,需要解释或搜索“大模型”的定义和相关信息(使用工具:tavily_search)。
=====================================
输入 token:53/输出 token:376/总共 token:429/
解决此问题的思考 Thought:
根据用户的问题,我们需要查询钱七和李四的身高信息,并获取关于“大模型”的解释和相关信息。因此,我们需要使用height_search工具来查询身高信息,以及使用tavily_search工具来搜索大模型的相关内容。
=====================================
输入 token:89/输出 token:426/总共 token:515/
{'Action': {'tool': 'height_search'},'Action Input': {'name': '钱七'},'Observation': 160,'Question': '1. 识别用户提到的“身高比较高的小伙子”和“长得像钱七”,可能需要查询钱七的身高信息(使用工具:height_search)。','Thought': '需要使用工具查询钱七的身高信息。'}
=====================================
输入 token:12/输出 token:289/总共 token:301/
下一步需要做什么:
需要使用工具查询李四的身高信息。
=====================================
输入 token:60/输出 token:435/总共 token:495/
{'Action': {'tool': 'height_search'},'Action Input': {'name': '李四'},'Observation': 175,'Question': '查询李四的身高信息。','Thought': '使用height_search工具查询李四的身高。'}
=====================================
输入 token:14/输出 token:301/总共 token:315/
下一步需要做什么:
使用tavily_search工具搜索大模型的相关内容。
=====================================
输入 token:61/输出 token:437/总共 token:498/
{'Action': {'tool': 'tavily_search'},'Action Input': {'query': '大模型是什么意思'},'Observation': 'Based on the data provided, the term "大模型" (Big Model) refers ''to a method or technology used in the fields of machine ''learning and artificial intelligence to handle large-scale ''data and complex models. These models are typically ''constructed using deep neural networks with a large number of ''parameters, ranging from billions to even trillions. The ''purpose of big models is to improve model expressive power ''and predictive performance, enabling them to handle more ''complex tasks and datasets effectively. Big models play a ''crucial role in addressing challenges posed by increasing ''data volumes and model complexities in the field of AI and ''machine learning.','Question': '大模型是什么意思?','Thought': '使用搜索引擎查询大模型的相关信息。'}
=====================================
输入 token:10/输出 token:311/总共 token:321/
开始生成重复步骤,或已执行 action 过多,判断结束了!重复步骤:使用搜索引擎查询大模型的相关信息。
下一步需要做什么:
no
=====================================
输入 token:109/输出 token:332/总共 token:441/
最终答案:
根据您的描述,钱七的身高是160厘米,而李四的身高是175厘米。至于您提到的“大模型”,这是一种在机器学习和人工智能领域中使用的方法或技术。大模型通常指的是具有大量参数(从数十亿到数万亿不等)的深度神经网络模型。这些模型的目的是提高表达能力和预测性能,使它们能够更有效地处理大规模数据和复杂任务。简而言之,大模型是为了应对人工智能和机器学习领域中数据量增加和模型复杂性提升的挑战而发展起来的技术。
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Process finished with exit code 0
代码
prompt-engineering/自定义 React Agant at master · 5zjk5/prompt-engineering · GitHub
相关文章:

React Agent 自定义实现
目录 背景 langchin 中的 agent langchin 中 agent 的问题 langchain 的 agent 案例 自定义 React Agent 大模型 工具定义 问题设定 问题改写,挖掘潜在意图 React Prompt 下一步规划 问题总结 代码 背景 之前使用过 langchian 中的 agent 去实现过一些…...

RabbitMQ 入门(六)SpringAMQP五种消息类型(Direct Exchange)
一、发布订阅-DirectExchange(路由模式) 在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。 Direct Exchan…...
2062:【例1.3】电影票
【题目描述】 已知一位小朋友的电影票价是10元,计算x位小朋友的总票价是多少? 【输入】 输入x。 【输出】 人数和电影票总价,中间用一个空格隔开。 【输入样例】 2 【输出样例】 2 20 Code #include<iostream> using namespace st…...

Python | Leetcode Python题解之第477题汉明距离总和
题目: 题解: class Solution:def totalHammingDistance(self, nums: List[int]) -> int:n len(nums)ans 0for i in range(30):c sum(((val >> i) & 1) for val in nums)ans c * (n - c)return ans...

Leecode刷题之路第25天之K个一组翻转链表
题目出处 25-K个一组翻转链表-题目出处 题目描述 给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保…...
nuxtjs3 使用tailwindcss做自适应
步骤 1: 安装 Tailwind CSS npm install tailwindcss postcss autoprefixer nuxtjs/tailwindcss步骤 2: 配置 Tailwind CSS 这将生成一个 tailwind.config.js 文件。 npx tailwindcss init步骤 3: 配置 nuxt.config.ts // https://nuxt.com/docs/api/configuration/nuxt-con…...
数据资产目录构建方法与应用
一、引言随着大数据、云计算、人工智能等技术的飞速发展,数据驱动已经成为企业发展的新引擎。数据资产目录作为数据管理的核心工具,不仅能够帮助企业更好地掌握自身数据资源的状况,还能为数据资产的全生命周期管理提供有力支撑。因此…...

【Python爬虫实战】从文件到数据库:全面掌握Python爬虫数据存储技巧
🌈个人主页:https://blog.csdn.net/2401_86688088?typeblog 🔥 系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html 目录 前言 一、文本文件数据存储的基础 二、如何将爬取的数据存储为.txt文件 三、如何…...

断其一指,无惧!ProFusion3D: 相机或者激光失效仍高效的多传感器融合3D目标检测算法
Abstract 多传感器融合在自动驾驶中的3D目标检测中至关重要,摄像头和激光雷达是最常用的传感器。然而,现有方法通常通过将两种模态的特征投影到鸟瞰视角(BEV)或透视视角(PV)来进行单视角的传感器融合&…...

CCS字体、字号更改+CCS下载官方链接
Step1、 按照图示箭头操作 step2 Step3 点击确定,点击Apply(应用),点击Apply and close(应用和关闭) 4、历代版本下载链接 CCS下载:官方链接https://www.ti.com/tool/CCSTUDIO The last but not least 如果成功的解决了你的问题&#x…...

YOLO11改进|注意力机制篇|引入SEAM注意力机制
目录 一、【SEAM】注意力机制1.1【SEAM】注意力介绍1.2【SEAM】核心代码二、添加【SEAM】注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4三、yaml文件与运行3.1yaml文件3.2运行成功截图一、【SEAM】注意力机制 1.1【SEAM】注意力介绍 下图是【SEAM】的结构图,让我们简单分析一下…...
简历修订与求职经历 - Chap04
节后第一周有点山中无甲子的状况。Oct08,节后第一天几乎全天处于心流状态。上午下午很快时间就结束了。 周五,按照既有的面试频次,感觉可以做点别的。然后就联系了附近的驾校,打算把摩托车驾驶证拿了。然后几乎到了驾校ÿ…...

鸿蒙开发案例:推箱子
推箱子游戏(Sokoban)的实现。游戏由多个单元格组成,每个单元格可以是透明的、墙或可移动的区域。游戏使用Cell类定义单元格的状态,如类型(透明、墙、可移动区域)、圆角大小及坐标偏移。而MyPosition类则用于…...

mysql--表的约束
目录 理解表的约束和操作 如何理解? 1、空属性null 2、默认值default 3、列描述comment 4、自动填充zorefill 5、主键primary key (1)创建表时指定可以 (2)创建表后指定key (3)删除主…...

Ubuntu 上安装 docker 并配置 Docker Compose 详细步骤
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storm…...
MySQL去除空白字符(如非标准空格、制表符等)
在 MySQL 中,需要去除 site_name 字段的空格,可以使用 TRIM() 函数。这个函数可以去掉字符串开头和结尾的空格。以下是一个示例查询,演示如何选择去除空格后的 site_name: SELECT TRIM(site_name) AS site_name FROM site_info;如…...
2063:【例1.4】牛吃牧草
【题目描述】 有一个牧场,牧场上的牧草每天都在匀速生长,这片牧场可供15头牛吃20天,或可供20头牛吃10天,那么,这片牧场每天新生的草量可供几头牛吃1天? 【输入】 (无) 【输出】 如题…...

QT开发:深入掌握 QtGui 和 QtWidgets 布局管理:QVBoxLayout、QHBoxLayout 和 QGridLayout 的高级应用
目录 引言 1. QVBoxLayout:垂直布局管理器 基本功能 创建 QVBoxLayout 添加控件 添加控件和设置对齐方式 设置对齐方式 示例代码与详解 2. QHBoxLayout:水平布局管理器 基本功能 创建 QHBoxLayout 添加控件 添加控件和设置对齐方式 设置对齐…...

Bootstrapping、Bagging 和 Boosting
bagging方法如下: bagging和boosting比较...
板块龙头公司
高通 高通(Qualcomm)是一家总部位于美国加利福尼亚州的全球领先半导体和电信设备公司。成立于1985年,高通专注于无线通信技术的研发和创新。 移动处理器: 高通开发的骁龙(Snapdragon)系列芯片广泛用于智能手机和平板电…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...