当前位置: 首页 > news >正文

resnetv1骨干

# 普通的卷积残差块
def apply_basic_block(
    x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None
):
    # 预设块名称前缀
    if name is None:
        name = f"v1_basic_block_{keras.backend.get_uid('v1_basic_block_')}"
    # 设置残差连接前段
    # 如果conv_shortcut为True,用点卷积切换通道,之后批次标准化,这时一般要下采样
    if conv_shortcut:
        shortcut = keras.layers.Conv2D(
            filters,
            1,
            strides=stride,
            use_bias=False,
            name=name + "_0_conv",
        )(x)
        shortcut = keras.layers.BatchNormalization(
            axis=BN_AXIS, epsilon=BN_EPSILON, name=name + "_0_bn"
        )(shortcut)
    else: # 否则不变
        shortcut = x
    # 普通卷积,strides=2时,下采样
    x = keras.layers.Conv2D(
        filters,
        kernel_size,
        padding="SAME",
        strides=stride,
        use_bias=False,
        name=name + "_1_conv",
    )(x)
    # 批次激活块
    x = keras.layers.BatchNormalization(
        axis=BN_AXIS, epsilon=BN_EPSILON, name=name + "_1_bn"
    )(x)
    x = keras.layers.Activation("relu", name=name + "_1_relu")(x)
    # 第二个普通卷积,步长为1
    x = keras.layers.Conv2D(
        filters,
        kernel_size,
        padding="SAME",
        use_bias=False,
        name=name + "_2_conv",
    )(x)
    x = keras.layers.BatchNormalization( # 批次标准化
        axis=BN_AXIS, epsilon=BN_EPSILON, name=name + "_2_bn"
    )(x)
    # 注意:残差连接前的两个残差块,都只是批次标准化处理,并没用激活函数
    # 这是因为激活函数会破坏残差的线性,因为卷积是线性的
    x = keras.layers.Add(name=name + "_add")([shortcut, x])
    # 之后经过激活函数处理
    x = keras.layers.Activation("relu", name=name + "_out")(x)
    return x
# 特殊的卷积提取块(宽--窄--宽)
def apply_block(
    x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None
):
    # 预设块前缀 v1_block_1
    if name is None:
        name = f"v1_block_{keras.backend.get_uid('v1_block')}"
    # 如果设置了conv_shortcut=True,用点卷积切换通道(4c),之后批次标准化,这时一般要下采样
    # 这是设置残差前段
    if conv_shortcut:
        shortcut = keras.layers.Conv2D(
            4 * filters,
            1,
            strides=stride,
            use_bias=False,
            name=name + "_0_conv",
        )(x)
        shortcut = keras.layers.BatchNormalization(
            axis=BN_AXIS, epsilon=BN_EPSILON, name=name + "_0_bn"
        )(shortcut)
    else: # 否则,残差前段=x(传入数据)
        shortcut = x
    # 点卷积切换通道,strides=2时,下采样
    x = keras.layers.Conv2D(
        filters, 1, strides=stride, use_bias=False, name=name + "_1_conv"
    )(x)
    # 批次激活块
    x = keras.layers.BatchNormalization(
        axis=BN_AXIS, epsilon=BN_EPSILON, name=name + "_1_bn"
    )(x)
    x = keras.layers.Activation("relu", name=name + "_1_relu")(x)
    # 普通卷积,步长采用默认1
    x = keras.layers.Conv2D(
        filters,
        kernel_size,
        padding="SAME",
        use_bias=False,
        name=name + "_2_conv",
    )(x)
    # 批次激活块
    x = keras.layers.BatchNormalization(
        axis=BN_AXIS, epsilon=BN_EPSILON, name=name + "_2_bn"
    )(x)
    x = keras.layers.Activation("relu", name=name + "_2_relu")(x)
    # 点卷积切换通道到4c
    x = keras.layers.Conv2D(
        4 * filters, 1, use_bias=False, name=name + "_3_conv"
    )(x)
    x = keras.layers.BatchNormalization( # 批次标准化
        axis=BN_AXIS, epsilon=BN_EPSILON, name=name + "_3_bn"
    )(x)
    # 残差连接,残差前不用激活函数,因为会破坏残差的线性
    x = keras.layers.Add(name=name + "_add")([shortcut, x])
    # 残差后用激活函数(这时通道是4c)
    x = keras.layers.Activation("relu", name=name + "_out")(x)
    return x
# 堆叠的残差块
def apply_stack(
    x,
    filters,
    blocks,
    stride=2,
    name=None,
    block_type="block",
    first_shortcut=True,
):
    # 设置默认名称前缀
    if name is None:
        name = "v1_stack"
    # 根据block_type的类型使用不同的提取块函数
    if block_type == "basic_block":
        block_fn = apply_basic_block # 基本卷积残差块
    elif block_type == "block":
        block_fn = apply_block # 特殊的卷积残差块
    else:
        raise ValueError(
            """`block_type` must be either "basic_block" or "block". """
            f"Received block_type={block_type}."
        )
    # 第一次特征提取,通常要下采样
    x = block_fn(
        x,
        filters,
        stride=stride,
        name=name + "_block1",
        conv_shortcut=first_shortcut,
    )
    # 之后的特征提取,步长一般是1,不进行下采样,只是残差
    for i in range(2, blocks + 1):
        x = block_fn(
            x, filters, conv_shortcut=False, name=name + "_block" + str(i)
        )
    return x
# keras_cv_export:导入当前类的路径
@keras_cv_export("keras_cv.models.ResNetBackbone")
class ResNetBackbone(Backbone): # resnet骨干
    def __init__(
        self,
        *,
        stackwise_filters, # 通道
        stackwise_blocks,
        stackwise_strides, # 步长列表
        include_rescaling, # 是否内部归一化
        input_shape=(None, None, 3), # 输入形状
        input_tensor=None, # 输入的数据
        block_type="block",
        **kwargs,
    ):
        # 模型输入
        inputs = utils.parse_model_inputs(input_shape, input_tensor) # (224,224,3)
        x = inputs # 中间变量
        # 如果要内部归一化
        if include_rescaling:
            x = keras.layers.Rescaling(1 / 255.0)(x) # 归一化
        # 第一次下采样(112,112,3)
        x = keras.layers.Conv2D(
            64, 7, strides=2, use_bias=False, padding="same", name="conv1_conv"
        )(x)
        # 批次激活块
        x = keras.layers.BatchNormalization(
            axis=BN_AXIS, epsilon=BN_EPSILON, name="conv1_bn"
        )(x)
        x = keras.layers.Activation("relu", name="conv1_relu")(x)
        # 最大池化(56,56,3)
        x = keras.layers.MaxPooling2D(
            3, strides=2, padding="same", name="pool1_pool"
        )(x)
        # 不同层级
        num_stacks = len(stackwise_filters)
        # 对应金字塔层级的特征图
        pyramid_level_inputs = {}
        # 遍历不同层级
        for stack_index in range(num_stacks):
            # 应用特征提取模块
            x = apply_stack(
                x,
                filters=stackwise_filters[stack_index],
                blocks=stackwise_blocks[stack_index], # 相同配置的块深度
                stride=stackwise_strides[stack_index],
                block_type=block_type, # 提取块的类型,根据这个选是用基本的卷积块,还是瓶颈块
                # 你看变量名称会坑死你,其实这个是说第一次如果要下采样的话,那残差前段也要跟着下采样
                # 不然你无法残差,条件就是如果block_type == "block"(特殊的卷积残差块)或者
                # stack_index > 0(基本卷积残差块)
                first_shortcut=(block_type == "block" or stack_index > 0),
                name=f"v2_stack_{stack_index}",
            )
            # 对应金字塔层级特征图
            pyramid_level_inputs[f"P{stack_index + 2}"] = (
                utils.get_tensor_input_name(x)
            )

        # Create model.
        super().__init__(inputs=inputs, outputs=x, **kwargs)
        # 设置实例属性
        self.pyramid_level_inputs = pyramid_level_inputs
        self.stackwise_filters = stackwise_filters
        self.stackwise_blocks = stackwise_blocks
        self.stackwise_strides = stackwise_strides
        self.include_rescaling = include_rescaling
        self.input_tensor = input_tensor
        self.block_type = block_type
    
    def get_config(self):
        config = super().get_config() # 获取父类的配置字典
        config.update( # 更新字典,加入了子类的配置
            {
                "stackwise_filters": self.stackwise_filters,
                "stackwise_blocks": self.stackwise_blocks,
                "stackwise_strides": self.stackwise_strides,
                "include_rescaling": self.include_rescaling,
                # Remove batch dimension from `input_shape`
                "input_shape": self.input_shape[1:],
                "input_tensor": self.input_tensor,
                "block_type": self.block_type,
            }
        )
        return config
    # 类属性(返回预设的配置)
    @classproperty
    def presets(cls):
        """Dictionary of preset names and configurations."""
        return copy.deepcopy(backbone_presets)
    # 类属性(包含权重的配置)
    @classproperty
    def presets_with_weights(cls):
        return copy.deepcopy(backbone_presets_with_weights)
# 使用自定义配置随机初始化backbone
model = ResNetBackbone(
    input_shape=(224,224,3),
    stackwise_filters=[64, 128, 256, 512], # 通道数
    stackwise_blocks=[2, 2, 2, 2], # 块深度
    stackwise_strides=[1, 2, 2, 2], # 步长
    include_rescaling=False,
)
len(model.layers)
model.pyramid_level_inputs
[model.get_layer(i).output for i in model.pyramid_level_inputs.values()]
model.summary()
input_data = tf.ones(shape=(8, 224, 224, 3))
output = model(input_data)
output.shape

# 注解,导入类的路径
@keras_cv_export("keras_cv.models.ResNet18Backbone")
class ResNet18Backbone(ResNetBackbone):
    def __new__(
        cls,
        include_rescaling=True,
        input_shape=(None, None, 3),
        input_tensor=None,
        **kwargs,
    ):
        # 把传入参数更新到kwargs里
        kwargs.update(
            {
                "include_rescaling": include_rescaling,
                "input_shape": input_shape,
                "input_tensor": input_tensor,
            }
        )
        # 获取resnet18骨干网络
        return ResNetBackbone.from_preset("resnet18", **kwargs)

    @classproperty
    def presets(cls):
        return {}

    @classproperty
    def presets_with_weights(cls):
        return {}
model1=ResNet18Backbone(input_shape=(224,224, 3))
model1.summary()
model1.pyramid_level_inputs
@keras_cv_export("keras_cv.models.ResNet34Backbone")
class ResNet34Backbone(ResNetBackbone):
    def __new__(
        cls,
        include_rescaling=True,
        input_shape=(None, None, 3),
        input_tensor=None,
        **kwargs,
    ):
        # Pack args in kwargs
        kwargs.update(
            {
                "include_rescaling": include_rescaling,
                "input_shape": input_shape,
                "input_tensor": input_tensor,
            }
        )
        return ResNetBackbone.from_preset("resnet34", **kwargs)

    @classproperty
    def presets(cls):
        """Dictionary of preset names and configurations."""
        return {}

    @classproperty
    def presets_with_weights(cls):
        """Dictionary of preset names and configurations that include
        weights."""
        return {}
@keras_cv_export("keras_cv.models.ResNet50Backbone")
class ResNet50Backbone(ResNetBackbone):
    def __new__(
        cls,
        include_rescaling=True,
        input_shape=(None, None, 3),
        input_tensor=None,
        **kwargs,
    ):
        # Pack args in kwargs
        kwargs.update(
            {
                "include_rescaling": include_rescaling,
                "input_shape": input_shape,
                "input_tensor": input_tensor,
            }
        )
        return ResNetBackbone.from_preset("resnet50", **kwargs)

    @classproperty
    def presets(cls):
        """Dictionary of preset names and configurations."""
        return {
            "resnet50_imagenet": copy.deepcopy(
                backbone_presets["resnet50_imagenet"]
            ),
        }

    @classproperty
    def presets_with_weights(cls):
        """Dictionary of preset names and configurations that include
        weights."""
        return cls.presets

@keras_cv_export("keras_cv.models.ResNet101Backbone")
class ResNet101Backbone(ResNetBackbone):
    def __new__(
        cls,
        include_rescaling=True,
        input_shape=(None, None, 3),
        input_tensor=None,
        **kwargs,
    ):
        # Pack args in kwargs
        kwargs.update(
            {
                "include_rescaling": include_rescaling,
                "input_shape": input_shape,
                "input_tensor": input_tensor,
            }
        )
        return ResNetBackbone.from_preset("resnet101", **kwargs)

    @classproperty
    def presets(cls):
        """Dictionary of preset names and configurations."""
        return {}

    @classproperty
    def presets_with_weights(cls):
        """Dictionary of preset names and configurations that include
        weights."""
        return {}
@keras_cv_export("keras_cv.models.ResNet152Backbone")
class ResNet152Backbone(ResNetBackbone):
    def __new__(
        cls,
        include_rescaling=True,
        input_shape=(None, None, 3),
        input_tensor=None,
        **kwargs,
    ):
        # Pack args in kwargs
        kwargs.update(
            {
                "include_rescaling": include_rescaling,
                "input_shape": input_shape,
                "input_tensor": input_tensor,
            }
        )
        return ResNetBackbone.from_preset("resnet152", **kwargs)

    @classproperty
    def presets(cls):
        """Dictionary of preset names and configurations."""
        return {}

    @classproperty
    def presets_with_weights(cls):
        """Dictionary of preset names and configurations that include
        weights."""
        return {}

model2=ResNet152Backbone(input_shape=(224,224,3))
len(model2.layers)
[model2.get_layer(i).output for i in model2.pyramid_level_inputs.values()]
model2.get_config()

{'name': 'res_net_backbone','trainable': True,'stackwise_filters': [64, 128, 256, 512],'stackwise_blocks': [3, 8, 36, 3],'stackwise_strides': [1, 2, 2, 2],'include_rescaling': True,'input_shape': (224, 224, 3),'input_tensor': None,'block_type': 'block'}

相关文章:

resnetv1骨干

# 普通的卷积残差块 def apply_basic_block( x, filters, kernel_size3, stride1, conv_shortcutTrue, nameNone ): # 预设块名称前缀 if name is None: name f"v1_basic_block_{keras.backend.get_uid(v1_basic_block_)}" # 设置残差连接前…...

设计模式,面试级别的详解(持续更新中)

设计模式,面试级别的详解(持续更新中) 软件的设计原则 常⽤的⾯向对象设计原则包括7个,这些原则并不是孤⽴存在的,它们相互依赖,相互补充。 开闭原则(Open Closed Principle,OCP)单⼀职责原则…...

第9篇:网络访问控制与认证机制

目录 引言 9.1 访问控制策略概述 9.2 认证机制的使用 9.3 密钥分发与证书机制 9.4 访问控制与认证在网络安全中的应用 9.5 网络访问控制与认证的挑战 9.6 总结 第9篇:网络访问控制与认证机制 引言 随着计算机网络的不断普及,安全问题日益受到关…...

CentOS安装NVIDIA驱动、CUDA以及nvidia-container-toolkit

0.提前准备 0.1.更新yum源(以阿里为例) 0.1.1 备份当前的yum源 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 0.1.2 下载新的CentOS-Base.repo 到/etc/yum.repos.d/ CentOS 5 wget -O /etc/yum.repos.d/CentOS-Base…...

STM32调试,发现HAL_Init();之后无法调试,甚至无法让程序停下来

参考文档: STM32调试,发现HAL_Init();之后无法调试,甚至无法让程序停下来 - asml - 博客园 症状 最近开始学习STM32Cube,发现新建工程后无法正常调试,过了HAL_Init();之后就无法继续调试了. 无法进行让程序暂停以及停止等操作.并在输出窗口不断刷出 ERROR: Can n…...

Ajax(web笔记)

文章目录 1.Ajax的概念2.Ajax 的作用3.原生Ajax4.Axios4.1Axios的概念4.2Axios入门 1.Ajax的概念 AsynchronousJavaScriptAndXML,异步的JavaScript和XML 2.Ajax 的作用 数据交换:过Ajax可以给服务器发送请求,并获取服务器响应的数据。异步交互:可以在…...

多入口+vite+vue3预渲染方案

如果你的项目要求加载速度要快,我们如果使用传统的vue3+sfc模式去开发,因为只有一个根节点,空白页面加载出来之后js才回去加载组件渲染,这样页面总是有一个短暂的空白。我们这里不讨论服务器端ssr和预渲染方案,仅仅是为了满足比较极端的优化需求,在这种情况下我的这套方案…...

Vue3+Ts函数封装与应用

目录 一、基础函数 二、实际应用 2.1、根据id找到对应的value值(找第一个) 2.2、根据id找到对应的value值(找所有) 2.3、不重复的升序数组找数字(二分查找) 2.4、重复的无序数组找数字(统计个数) 2.5、将数组整理为树结构(省市区为例) 为什么要积累呢?因为面…...

C语言全局变量和局部变量同时应用的题题型[求一堆数组中10个学生的成绩里最高分、最低分和平均分。]

C语言函数 全局变量与局部结合变量题。 本片代码中包含全局变量max和min。 以及局部变量aver。 全局变量运用于从定义变量开始&#xff0c;局部变量运用于定义它的调用函数内。 正文开始: #include <stdio.h> int max0,min0; int main() { int average(int array[…...

深度学习实战94-基于图卷积神经网络GCN模型的搭建以及在金融领域的场景

大家好,我是微学AI,今天给大家介绍一下深度学习实战94-基于图卷积神经网络GCN模型的搭建以及在金融领域的场景。文章首先介绍了GCN模型的原理及模型结构,随后提供了数据样例,并详细展示了实战代码。通过本文,读者可以深入了解GCN模型在金融场景下的应用,同时掌握代码的具…...

.NET 6新特性 | System.Text.Json功能改进

在.NET 6.0中&#xff0c;JSON处理库得到了显著的改进&#xff0c;主要体现在System.Text.Json上。以下是对.NET 6.0中改进的JSON处理库的详细分析&#xff1a; 一、System.Text.Json的引入与优势 在.NET 6中&#xff0c;Microsoft引入了新的JSON库System.Text.Json作为官方推…...

Matlab如何对全局优化算法启动并行计算

在 MATLAB 中&#xff0c;启用并行计算可以显著提高一些优化算法&#xff08;如遗传算法 ga 和粒子群算法 particleswarm&#xff09;的速度&#xff0c;特别是在种群或粒子群较大时。要启用并行计算&#xff0c;可以使用 UseParallel 参数。 1. 启用并行计算步骤 Step 1: 检…...

MYSQL-查看数据库中的存储过程语法(六)

13.7.5.9 SHOW CREATE PROCEDURE 语句 SHOW CREATE PROCEDURE proc_name此语句是 MySQL 扩展。它返回确切的字符串 &#xff0c;可用于重新创建命名的存储过程。SHOW CREATE FUNCTION&#xff0c;显示有关存储函数的信息 &#xff08;参见第 13.7.5.8 节“ SHOW CREATE FUNCTI…...

【深度学习】(12)--模型部署 <连接客户端与服务端>

文章目录 模型部署一、模型部署的定义与目的二、模型部署的步骤三、模型部署的方式四、Flask框架五、实现模型部署1. 搭建服务端1.1 初始化Flask app1.2 加载模型1.3 数据预处理1.4 构建装饰器1.5 完整代码 2. 搭建客户端2.1 服务端网址2.2 发送请求2.3 完整代码 六、运行使用 …...

优化SQL查询的最佳实践:提升数据库性能的关键

SQL 查询是数据库操作的核心&#xff0c;特别是当数据量庞大时&#xff0c;性能问题尤为明显。优化 SQL 查询不仅能减少响应时间&#xff0c;还能提高系统整体的可伸缩性。本文将从索引、查询结构、数据库设计和缓存等方面详细介绍如何优化 SQL 查询以提升性能。 一、索引的使…...

【AIGC视频生成】视频扩散模型(综述+最新进展)

文章目录 一、综述1.1 扩散模型1.1.1 Denoising Diffusion Probabilistic Models (DDPMs)1.1.2 Score-Based Generative Models (SGMs)1.1.3 Stochastic Differential Equations (Score SDEs) 1.2 相关任务1.3 数据集1.4 评价指标 二、年度进展1.runway gen2.1 Gen-1&#xff1…...

如何下载3GPP协议?

一、进入3GPP网页 https://www.3gpp.org/ 二、点击“Specifications &Technologies” 三、点击“FTP Server” 网址&#xff1a; https://www.3gpp.org/specifications-technologies 四、找到“latest”&#xff0c;查看最新版 网址&#xff1a; https://www.3gpp.org/ftp…...

目标检测系统操作说明【用户使用指南】(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型)

1.100多种【基于YOLOv8/v10/v11的目标检测系统】目录&#xff08;pythonpyside6界面系统源码可训练的数据集也完成的训练模型&#xff09; 2.目标检测系统【环境搭建过程】&#xff08;GPU版本&#xff09; 3.目标检测系统【环境详细配置过程】&#xff08;CPU版本&#xff0…...

Vue中使用路由

目录 单页应用程序&#xff1a;SPA - Single Page Application路由 VueRouterVueRouter使用步骤组件存放目录问题 路由模块封装声明式导航 - 导航连接两个类名自定义匹配类名 声明式导航 - 跳转传参Vue路由 - 重定向Vue路由 - 404Vue路由 - 模式设置 编程式导航 - 基本跳转编程…...

【Linux】多线程安全之道:互斥、加锁技术与底层原理

目录 1.线程的互斥 1.1.进程线程间的互斥相关背景概念 1.2.互斥量mutex的基本概念 所以多线程之间为什么要有互斥&#xff1f; 为什么抢票会抢到负数&#xff0c;无法获得正确结果&#xff1f; 为什么--操作不是原子性的呢&#xff1f; 解决方式&#xff1a; 2.三种加锁…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...