vscode不能执行vue命令/ vue : 无法加载文件
问题:
解决:
1. 在Windows应用中找到Windows PowerShell,以管理员运行:
2. 在命令框输入: set-ExecutionPolicy RemoteSigned, 然后输入A即可解决
相关文章:

vscode不能执行vue命令/ vue : 无法加载文件
问题: 解决: 1. 在Windows应用中找到Windows PowerShell,以管理员运行: 2. 在命令框输入: set-ExecutionPolicy RemoteSigned, 然后输入A即可解决...
1.4 STL C++面试问题
1.4.1 说说STL的基本组成部分 总结 STL 的基本组成部分包括容器、算法、迭代器、函数对象和仿函数和适配器。通过这些组件,STL 提供了高效、灵活和可复用的代码结构,极大地提高了 C 的开发效率和程序的可维护性。STL 的设计思想使得算法和数据结构的使…...
Bash、sh 和 Shell都弄混了?
在Linux和Unix系统中,Bash、sh 和 Shell 都与命令行解释器相关,但它们各自的含义和作用略有不同。以下是它们之间的关系和区别: Shell Shell 是一个通用术语,指的是操作系统中负责解释和执行用户命令的程序。它是用户与操作系统…...
架构师备考专栏-导航页
简介 架构师备考专栏——软考系统架构师考试的学习宝典,集合了全面覆盖架构师考试大纲的精华文章。每篇文章都为本人手输,并校对数遍后发表,在此我保障每篇文章的质量绝对过关。诚邀对架构师软考感兴趣的朋友们收藏此页面,并根据个人所需高效…...

STM32-Cube定时器TIM
一、内部时钟源 1、创建项目 File → New → STM32 project选择STM32F103C8T6单片机,命名TIM 2、配置单片机 1.打开USART1,方便我们与电脑连接查看数据 开启UART1并开启中断。 2、设置时钟源 开启外部高速晶振 将时钟频率设置为72MHz 设置调试模…...

Webpack 是什么? 解决了什么问题? 核心流程是什么?
在前端开发中,Webpack 无疑是一个举足轻重的工具。它作为一个静态资源打包工具,能够帮助开发者将项目中的各种资源高效整合,以便于在浏览器中加载和执行。本文将深入探讨 Webpack 的核心功能、解决的问题以及 Webpack的核心流程。 Webpack是什…...
Jenkins面试整理-Jenkins 的主要用途是什么?
Jenkins 的主要用途 是在软件开发流程中实现自动化,尤其是在持续集成(CI)和持续交付/部署(CD)中。具体来说,Jenkins 的主要用途包括: 1. 持续集成(CI): ● Jenkins 自动从版本控制系统(如 Git、SVN)中拉取代码,自动化地编译、构建和测试代码。 ● 每当开发人员提…...
Linux下使用C/C++进行UDP网络编程
UDP 是User Datagram Protocol 的简称,中文名是用户数据报协议,是一种无连接、不可靠的协议,同样它也是工作在传顺层。它只是简单地实现从一端主机到另一端主机的数据传输功能,这些数据通过 IP 层发送,在网络中传输&am…...

【JavaEE初阶】网络原理—关于TCP协议值滑动窗口与流量控制,进来看看吧!!!
前言 🌟🌟本期讲解关于TCP协议的重要的机制“连接的建立和断开”~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 …...

无人机避障——使用三维PCD点云生成的2D栅格地图PGM做路径规划
着重介绍通过对三维 PCD 点云进行处理生成 2D 栅格地图 PGM,而后将该 PGM 地图充分运用到无人系统路径规划之中,使得无人机能够依据此规划合理避开飞行路线上可能出现的障碍物。(解决如何使用PGM的问题) Hybrid A*算法 参考博客…...
supermall项目上拉加载bug分析
1.bug分析 bug出现的过程是这样的:better-scroll框架会计算滚动内容的高度(通过BScroll对象的scrollerHeight属性记录滚动内容的高度) 由于内容中的图片资源还未加载成功 就已经完成计算 导致计算结果错误 而计算之后 图片资源随之加载完成 这时候better-scroll框架…...

【linux网络编程】| socket套接字 | 实现UDP协议聊天室
前言:本节内容将带友友们实现一个UDP协议的聊天室。 主要原理是客户端发送数据给服务端。 服务端将数据再转发给所有链接服务端的客户端。 所以, 我们主要就是要实现客户端以及服务端的逻辑代码。 那么, 接下来开始我们的学习吧。 ps:本节内容…...

第二届开放原子大赛-开源工业软件算法集成大赛即将启动!
第二届开放原子大赛-开源工业软件算法集成大赛作为开放原子开源基金会组织举办的开源技术领域专业赛事,聚焦开源底座框架平台建设,通过组件化集成的开发模式,丰富平台功能模块,拓展其应用场景,以此促进工业软件生态的繁…...
PXC集群(Percona XtraDB Cluster )
一、简介 基于Galera Cluster技术的开源分布式数据库解决方案,它允许你在多个MySQL服务器之间创建一个同步的多主复制集群。 特点: * 多主复制架构: PXC集群支持多主复制,每个节点都可以同时读写数据,这使得应用程序可以更灵活地进行负载均衡和高可用性设置。* 同步复制:…...

分布式光伏是什么意思?如何高效管理?
分布式光伏系统是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求。根据通知,分布式光伏系统主要有以下几类定义: 10kV以下电压等级接入,且单个并网点总装机容量不超过6MW的分布式电源:这…...
提问GPT
1 理解GPT AI模型即采用深度学习技术的人工神经网络。 你不会被AI取代,而是会被熟练运用AI的人取代 1.1 问答或对话是普通用户与这一轮新AI产品的典型交互方式。 GPT生成式预训练转换器 了解当前GPT产品的形式: 通用聊天机器人…...

李飞飞团队新突破:低成本高泛化机器人训练法,零样本迁移成功率90%!
在机器人训练中,如何高效地利用模拟环境一直是研究者们关注的重点问题。 近日,美国斯坦福大学李飞飞教授团队提出了一种突破性的“数字表亲”(digital cousins)概念。这一创新方法既保留了数字孪生的优势,又大大降低了…...
PHP内存马:不死马
内存马概念 内存马是无文件攻击的一种常用手段,利用中间件的进程执行某些恶意代码。首先要讲的是PHP不死马,实质上就是直接用代码弄一个死循环,强占一个 PHP 进程,并不间断的写一个PHP shell,或者执行一段代码。 不死…...

【python】OpenCV—Connected Components
文章目录 1、任务描述2、代码实现3、完整代码4、结果展示5、涉及到的库函数6、参考 1、任务描述 基于 python opencv 的连通分量标记和分析函数,分割车牌中的数字、号码、分隔符 cv2.connectedComponentscv2.connectedComponentsWithStatscv2.connectedComponents…...

【优选算法篇】前缀之序,后缀之章:于数列深处邂逅算法的光与影
文章目录 C 前缀和详解:基础题解与思维分析前言第一章:前缀和基础应用1.1 一维前缀和模板题解法(前缀和)图解分析C代码实现易错点提示代码解读题目解析总结 1.2 二维前缀和模板题解法(二维前缀和)图解分析C…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...