从0开始学统计-数据类别与测量层次
数据分析前,我们首先要弄清楚数据的分类。数据并不仅仅是一堆数字和文字,它们实际上代表了我们看待事物属性的不同视角。从最宽泛的角度出发,我们可以将数据划分为定量(比如用数字表示)或者定性(例如,分成不同类别)。在数据分析过程中,了解数据类型,对选择合适的统计方法与结果解读非常重要。本文将详细解释数据的类型、测量层次、数据类型的转换,并简要介绍数据测量层次与统计方法的关系。
一、数据的基本分类一般而言,数据基本上可以分为两大类:定性数据和定量数据。下面我们来一探究竟。
什么是定量数据?
定量数据是指可以通过计数或测量得到的数据,它反映了事物的数量特征,通常是数字形式(具体应视数字的含义而定)。根据数据的精确程度,定量数据可以进一步划分为离散数据和连续数据。离散数据(Discrete Data):离散数据通常是计数的结果,如人数、车辆数等,它的值不可再分。连续数据(Continuous Data):连续数据通常是测量的结果,如长度、重量、时间等,它可以取任意值,且能够进一步划分成更小的单位。
什么是定性数据?
定性数据,又称为分类数据,是描述事物属性的非数字数据,它反映了事物的质的方面。定性数据包括定类数据和定序数据。定类数据(Nominal Data):定类数据是用于分类的数据,如性别、国籍、职业等,其数值没有顺序或大小的含义。定序数据(Ordinal Data) :定序数据除了具有分类的特性外,其分类的结果还具有一定的顺序性,如教育水平、疼痛等级等,它们虽然表达了顺序,但是其数值之间的差距并不代表相等差值。
二、测量层次
在统计学中,数据的测量层次(又称计量尺度)是对数据分类的一种常见标准,它包括定类尺度、序数尺度、区间尺度和比率尺度。下面是具体的定义及示例。
定类尺度(Nominal):
定类尺度是最基本的计量尺度,它用于分类和标记,但不包含任何数量上的信息。定类尺度的数据无法进行除分类以外的任何统计运算。例如,人的血型(A型、B型、AB型、O型)就是定类尺度的数据。
定序尺度(Ordinal):
定序尺度的数据不仅能够区分不同的个体,还能够表达顺序关系,但是它不能反映出类别之间的确切差距。比如军衔、竞赛名次等,我们知道少将高于上尉,但其中的差距难以准确衡量。
定距尺度(Interval):
定距尺度的数据在序数数据的基础上,增加了等距的特性,这意味着数据值之间的差是有意义的。定距尺度没有绝对零点(但可人为进行设定),因此无法计算比例。摄氏温度就是一个典型的定距尺度数据。
定比尺度(Ratio):
定比尺度具有定类、定序和定距尺度的所有特性,并且有一个绝对的零点,支持所有数学运算。金钱、重量、距离等都是定比尺度的例子。
三、定性数据
与定量数据的转换在某些情况下,为了数据分析或可视化的需要,可以将定量数据转换成定性数据。下面列举了一些常见的方式把定量数据转换成定性数据:
分组或区间化:
将连续的定量数据分成离散的区间或组,然后将数据分为不同的类别。例如,将年龄分为年龄组(如青少年、成年人、老年人)。
标签化:
将数值数据映射到相应的标签或类别。例如,将数值型的温度数据映射为"冷"、“温暖”、"炎热"等标签。
百分位排名:
将数据按其相对大小进行排名,并将排名分为不同的百分位,例如四分位数(分为上四分位、下四分位等)。
归一化:
将数值数据进行归一化处理,将其映射到特定范围内的数值,例如将百分比得分映射到0到100的范围,然后可以将其分为不同的等级。
基于阈值的二值化:
将数值数据与一个或多个阈值进行比较,将其转换为二元的类别,例如将某个测试分数与及格线比较,得出"及格"或"不及格"。
聚类分析:
使用聚类算法将数据分成不同的群组,每个群组可以视为一个定性类别。
四、数据类型与统计方法的关系
不同类型的数据需要采用不同的统计方法进行分析。比如,名义尺度的数据通常使用模式(众数)来描述集中趋势,而比率尺度的数据则可以使用均值、中位数等更多的统计量。在假设检验时,定性数据多采用卡方检验,而定量数据则可能采用t检验或ANOVA等方法。
此外,数据的类型还影响了数据可视化的方式。例如,定性数据常用条形图或饼图来展示,而定量数据则可以使用直方图、箱线图等。
相关文章:

从0开始学统计-数据类别与测量层次
数据分析前,我们首先要弄清楚数据的分类。数据并不仅仅是一堆数字和文字,它们实际上代表了我们看待事物属性的不同视角。从最宽泛的角度出发,我们可以将数据划分为定量(比如用数字表示)或者定性(例如&#…...

使用AIM对SAP PO核心指标的自动化巡检监控
一、背景 由于SAP PO系统维护成本较高,各类型异常报错等都需要人员进行时刻监控和响应,遂由AIM平台进行自动化巡检SAP PO的各指标,然后告警通知用户,节省维护成本和提高工作效率 二、核心指标监控 SAP PO失败消息 适用于S…...

C++——unordered_map和unordered_set的封装
unordered_map和unordered_set的底层结构用到的都是在哈希表模拟实现中的哈希桶的实现方式,哈希桶的具体实现我已经在哈希表的模拟实现里做过详细的介绍,这边会引用里面的代码进行改造和封装,同时为了方便操作,同样我采用二倍扩容…...

微信小程序scroll-view吸顶css样式化表格的表头及iOS上下滑动表头的颜色覆盖、z-index应用及性能分析
微信小程序scroll-view吸顶css样式化表格的表头及iOS上下滑动表头的颜色覆盖、z-index应用及性能分析 目录 微信小程序scroll-view吸顶css样式化表格的表头及iOS上下滑动表头的颜色覆盖、z-index应用及性能分析 1、iOS在scroll-view内部上下滑动吸顶的现象 正常的上下滑动吸顶…...

【高中数学】数列
等差数列前 n n n 项和性质 公式一: S n n ( a 1 a n ) 2 S_n\frac{n(a_1a_n)}{2} Sn2n(a1an) 公式二: S n n a 1 n ( n − 1 ) 2 d S_nna_1\frac{n(n-1)}{2}d Snna12n(n−1)d 性质1:等差数列中依次 k k k 项之和 S …...

数字媒体技术基础:AMF(ACES 元数据文件 )
在现代电影和电视制作中,色彩管理变得越来越重要。ACES(Academy Color Encoding System,美国电影艺术与科学学院颜色编码系统)是一个广泛采用的色彩管理和交换系统,旨在解决不同设备、软件和工作流程之间的色彩不一致问…...

Apache Dubbo (RPC框架)
本文参考官方文档:Apache Dubbo 1. Dubbo 简介与核心功能 Apache Dubbo 是一个高性能、轻量级的开源Java RPC框架,用于快速开发高性能的服务。它提供了服务的注册、发现、调用、监控等核心功能,以及负载均衡、流量控制、服务降级等高级功能。…...
LeetCode 3226. 使两个整数相等的位更改次数
. - 力扣(LeetCode) 题目 给你两个正整数 n 和 k。你可以选择 n 的 二进制表示 中任意一个值为 1 的位,并将其改为 0。 返回使得 n 等于 k 所需要的更改次数。如果无法实现,返回 -1。 示例 1: 输入: n …...

面试经典 150 题:189、383
189. 轮转数组 【参考代码】 class Solution { public:void rotate(vector<int>& nums, int k) {int size nums.size();if(1 size){return;}vector<int> temp(size);//k k % size;for(int i0; i<size; i){temp[(i k) % size] nums[i];}nums temp; }…...

Python模拟真人动态生成鼠标滑动路径
一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序,它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言,原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势: 模拟…...

如何压缩pdf文件的大小?5分钟压缩pdf的方法推荐
如何压缩pdf文件的大小?在现代办公和学习中,PDF文件因其稳定性和广泛的兼容性被广泛使用。然而,随着文件内容的增多,制作好的PDF文件常常变得过大,给使用带来了诸多不便。无论是电子邮件附件的发送,还是在线…...

【SQL】[2BP01] ERROR: cannot drop table course because other objects depend on it
问题描述 在尝试执行以下SQL语句时,发生错误。 DROP TABLE Course RESTRICT;执行以上语句后,系统返回了一个错误提示: [2BP01] ERROR: cannot drop table course because other objects depend on it 详细:constraint sc_cno_…...

gbase8s之spring框架用druid中间件报语法错误
spring框架 调用druid中间件 时报这个错: MetaDataAccessException: Could not get Connection for extracting meta-data; nested exception is org.springframework.jdbc.CannotGetJdbcConnectionException: Failed to obtain JDBC Connection; nested exception …...

【网络安全】|nessus使用
1、扫描结果分析: Sev:漏洞的严重性级别 CVSS:量化漏洞严重性的标准,通过计算得出一个分数,分数越高表示漏洞越严重。 VPR:基于风险的评分系统,帮助组织优先处理风险最高的漏洞。 EPSS…...

CSRA2的LINUX操作系统24年11月2日上午上课笔记
几个查找命令: .whereis:查看文件的路径,查看可执行文件的路径,一级相应文档路径。 .which:查看系统可执行的文件的路径,以及命令的别名等信息 .local:他会将linux中的所有文件的路径信息保存到数据库中,在数据库中查…...

通过分解质因数求若干个数的最小公倍数
求最小公倍数的常规方法回顾 暴力枚举法 long long work(long long a,long long b) {for(long long imax(a,b);;i)if(i%a0&&i%b0)return i; }大数翻倍法 long long work(long long a,long long b) {if(a<b) swap(a,b);for(long long ia;;ia) // i 是 a 的倍数&#…...

数据库三范式(1NF、2NF、3NF)
1NF(第一范式) 定义:确保每一列都是原子值,即是不可分割的基础数据项。 所谓第一范式(1NF)是指在关系模型中,对于添加列的一个规范要求,所有的列都 应该是原子性的,即数…...

C语言_数据结构_顺序表
1. 本章重点 顺序表初始化顺序表尾插顺序表尾删顺序表头插顺序表头删顺序表查找顺序表在pos位置插入x顺序表删除pos位置的值顺序表销毁顺序表打印 2. 顺序表的概念及结构 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储…...

Llama 3.2 Vision Molmo:多模态开源生态系统基础
编者按: 视觉功能的融入对模型能力和推理方式的影响如何?当我们需要一个既能看懂图像、又能生成文本的 AI 助手时,是否只能依赖于 GPT-4V 这样的闭源解决方案? 我们今天为大家分享的这篇文章,作者的核心观点是…...

【数据结构与算法】第6课—数据结构之栈
文章目录 1. 栈2. 栈的初始化和栈的销毁3. 入栈和出栈(压栈)4. 取栈顶元素并打印5. 栈的练习题5.1 有效的括号 1. 栈 栈:也是一种线性表,其数据结构与动态顺序表的数据结构类似栈分为栈顶和栈底,在栈中,插入…...

开源全站第一个Nextron(NextJS+electron)项目--NextTalk:一款集成chatgpt的实时聊天工具
NextTalk 简介 该项目是一个基于Nextron(NextJSElectron)的桌面端实时聊天工具。 但由于使用了NextJS中的ssr及api route功能,该程序只能在开发环境运行。 关于生产版本:我将其网页端部分分离,并用Pake将其打包成桌面端,生产体…...

多样化的编程模型:并发与并行策略
因为经常看着某些框架设计的编程模型很晕,所以自己梳理总结了一下编程模型的分类,总共六个大类,基本所有常见框架设计的编程模型都是基于这六个大类来实现的,如果有错误的地方,请见谅并不吝赐教,感谢&#…...

npm入门教程2:npm历史
一、起源与诞生 时间背景:npm的诞生与Node.js的兴起紧密相关。Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它允许JavaScript代码在服务器端运行。随着Node.js的流行,开发者们对于包管理和依赖解决的需求日益增长。诞生:…...

Cuebric:用AI重新定义3D创作的未来
一、简介 Cuebric 是一家成立于2022年夏天的好莱坞创新公司,致力于为电影、电视、游戏和时尚等行业提供先进的AI多模态SaaS平台。自2024年1月正式推出以来,Cuebric 已经在市场上获得了广泛的认可和积极的反馈。目前,该平台正处于1.0版本的beta测试阶段,已募集约50万美元的…...

前端react常见面试题目(basic)
1. 如果 React 组件的属性没有传值,它的默认值是什么? 如果一个 React 组件的属性(props)没有传值,那么它的默认值会是 undefined。你可以通过组件内部的逻辑来设置默认值,比如使用逻辑运算符或者 ES6 的默认参数。 …...

机器人技术基础(4章逆运动解算和雅克比矩阵)
逆运动解算: 雅克比矩阵: 将动力学分析转向运动的物体 下图中的 n o y 反映了机器人的姿态矩阵, 最后一列 p 反应了机器人在空间中的位置:...

OpenGL入门002——顶点着色器和片段着色器
文章目录 一些概念坐标转换阶段顶点着色器片段着色器VBOVAO 实战简介main.cppCMakeLists.txt最终效果 一些概念 坐标转换阶段 概述: 模型空间、世界空间、视图空间和裁剪空间是对象在3D场景中经历的不同坐标变换阶段。每个空间对应渲染管道的一个步骤,…...

[数组排序] LCR 164. 破解闯关密码
文章目录 1. 题目链接2. 题目大意3. 示例4. 解题思路5. 参考代码 1. 题目链接 LCR 164. 破解闯关密码 - 力扣(LeetCode) 2. 题目大意 描述:给定一个非负整数数组 nums。 要求:将数组中的数字拼接起来排成一个数,打印…...

05 Django 框架模型介绍(一)
文章目录 1、Django 模型简介2、Django 中创建并使用模型(1)新加一个名为 myapp 的应用(2)定义模型类(2)激活模型类(3)创建数据库迁移文件(4)应用迁移文件 3、…...

【简道云 -注册/登录安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…...