YOLOv8改进 - 注意力篇 - 引入iRMB注意力机制
#YOLO# #目标检测# #计算机视觉#
一、本文介绍
作为入门性篇章,这里介绍了iRMB注意力在YOLOv8中的使用。包含iRMB原理分析,iRMB的代码、iRMB的使用方法、以及添加以后的yaml文件及运行记录。
二、iRMB原理分析
iRMB官方论文地址:文章
iRMB官方代码地址:代码

iRMB注意力机制:iRMB是一种混合网络模块,结合了卷积神经网络(CNN)的轻量级特性和 Transformer 模型的动态处理能力。


三、相关代码:
iRMB注意力的代码,如下:
from timm.models._efficientnet_blocks import SqueezeExcite
from functools import partial
inplace = Trueclass LayerNorm2d(nn.Module):def __init__(self, normalized_shape, eps=1e-6, elementwise_affine=True):super().__init__()self.norm = nn.LayerNorm(normalized_shape, eps, elementwise_affine)def forward(self, x):x = rearrange(x, 'b c h w -> b h w c').contiguous()x = self.norm(x)x = rearrange(x, 'b h w c -> b c h w').contiguous()return xdef get_norm(norm_layer='in_1d'):eps = 1e-6norm_dict = {'none': nn.Identity,'in_1d': partial(nn.InstanceNorm1d, eps=eps),'in_2d': partial(nn.InstanceNorm2d, eps=eps),'in_3d': partial(nn.InstanceNorm3d, eps=eps),'bn_1d': partial(nn.BatchNorm1d, eps=eps),'bn_2d': partial(nn.BatchNorm2d, eps=eps),# 'bn_2d': partial(nn.SyncBatchNorm, eps=eps),'bn_3d': partial(nn.BatchNorm3d, eps=eps),'gn': partial(nn.GroupNorm, eps=eps),'ln_1d': partial(nn.LayerNorm, eps=eps),'ln_2d': partial(LayerNorm2d, eps=eps),}return norm_dict[norm_layer]def get_act(act_layer='relu'):act_dict = {'none': nn.Identity,'relu': nn.ReLU,'relu6': nn.ReLU6,'silu': nn.SiLU}return act_dict[act_layer]class ConvNormAct(nn.Module):def __init__(self, dim_in, dim_out, kernel_size, stride=1, dilation=1, groups=1, bias=False,skip=False, norm_layer='bn_2d', act_layer='relu', inplace=True, drop_path_rate=0.):super(ConvNormAct, self).__init__()self.has_skip = skip and dim_in == dim_outpadding = math.ceil((kernel_size - stride) / 2)self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride, padding, dilation, groups, bias)self.norm = get_norm(norm_layer)(dim_out)self.act = get_act(act_layer)(inplace=inplace)self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()def forward(self, x):shortcut = xx = self.conv(x)x = self.norm(x)x = self.act(x)if self.has_skip:x = self.drop_path(x) + shortcutreturn xclass iRMB(nn.Module):def __init__(self, dim_in, dim_out, norm_in=True, has_skip=True, exp_ratio=1.0, norm_layer='bn_2d',act_layer='relu', v_proj=True, dw_ks=3, stride=1, dilation=1, se_ratio=0.0, dim_head=8, window_size=7,attn_s=True, qkv_bias=False, attn_drop=0., drop=0., drop_path=0., v_group=False, attn_pre=False):super().__init__()self.norm = get_norm(norm_layer)(dim_in) if norm_in else nn.Identity()dim_mid = int(dim_in * exp_ratio)self.has_skip = (dim_in == dim_out and stride == 1) and has_skipself.attn_s = attn_sif self.attn_s:assert dim_in % dim_head == 0, 'dim should be divisible by num_heads'self.dim_head = dim_headself.window_size = window_sizeself.num_head = dim_in // dim_headself.scale = self.dim_head ** -0.5self.attn_pre = attn_preself.qk = ConvNormAct(dim_in, int(dim_in * 2), kernel_size=1, bias=qkv_bias, norm_layer='none',act_layer='none')self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, groups=self.num_head if v_group else 1, bias=qkv_bias,norm_layer='none', act_layer=act_layer, inplace=inplace)self.attn_drop = nn.Dropout(attn_drop)else:if v_proj:self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, bias=qkv_bias, norm_layer='none',act_layer=act_layer, inplace=inplace)else:self.v = nn.Identity()self.conv_local = ConvNormAct(dim_mid, dim_mid, kernel_size=dw_ks, stride=stride, dilation=dilation,groups=dim_mid, norm_layer='bn_2d', act_layer='silu', inplace=inplace)self.se = SqueezeExcite(dim_mid, rd_ratio=se_ratio,act_layer=get_act(act_layer)) if se_ratio > 0.0 else nn.Identity()self.proj_drop = nn.Dropout(drop)self.proj = ConvNormAct(dim_mid, dim_out, kernel_size=1, norm_layer='none', act_layer='none', inplace=inplace)self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()def forward(self, x):shortcut = xx = self.norm(x)B, C, H, W = x.shapeif self.attn_s:# paddingif self.window_size <= 0:window_size_W, window_size_H = W, Helse:window_size_W, window_size_H = self.window_size, self.window_sizepad_l, pad_t = 0, 0pad_r = (window_size_W - W % window_size_W) % window_size_Wpad_b = (window_size_H - H % window_size_H) % window_size_Hx = F.pad(x, (pad_l, pad_r, pad_t, pad_b, 0, 0,))n1, n2 = (H + pad_b) // window_size_H, (W + pad_r) // window_size_Wx = rearrange(x, 'b c (h1 n1) (w1 n2) -> (b n1 n2) c h1 w1', n1=n1, n2=n2).contiguous()# attentionb, c, h, w = x.shapeqk = self.qk(x)qk = rearrange(qk, 'b (qk heads dim_head) h w -> qk b heads (h w) dim_head', qk=2, heads=self.num_head,dim_head=self.dim_head).contiguous()q, k = qk[0], qk[1]attn_spa = (q @ k.transpose(-2, -1)) * self.scaleattn_spa = attn_spa.softmax(dim=-1)attn_spa = self.attn_drop(attn_spa)if self.attn_pre:x = rearrange(x, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()x_spa = attn_spa @ xx_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,w=w).contiguous()x_spa = self.v(x_spa)else:v = self.v(x)v = rearrange(v, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()x_spa = attn_spa @ vx_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,w=w).contiguous()# unpaddingx = rearrange(x_spa, '(b n1 n2) c h1 w1 -> b c (h1 n1) (w1 n2)', n1=n1, n2=n2).contiguous()if pad_r > 0 or pad_b > 0:x = x[:, :, :H, :W].contiguous()else:x = self.v(x)x = x + self.se(self.conv_local(x)) if self.has_skip else self.se(self.conv_local(x))x = self.proj_drop(x)x = self.proj(x)x = (shortcut + self.drop_path(x)) if self.has_skip else xreturn x
四、YOLOv8中iRMB使用方法
1.YOLOv8中添加iRMB模块:
首先在ultralytics/nn/modules/conv.py最后添加模块的代码。
2.在conv.py的开头__all__ = 内添加iRMB模块的类别名:
3.在同级文件夹下的__init__.py内添加iRMB的相关内容:(分别是from .conv import iRMB ;以及在__all__内添加iRMB)
4.在ultralytics/nn/tasks.py进行iRMB注意力机制的注册,以及在YOLOv8的yaml配置文件中添加iRMB即可。
首先打开task.py文件,按住Ctrl+F,输入parse_model进行搜索。找到parse_model函数。找以下注册代码,将iRMB添加进去即可:
elif m in {iRMB}:args = [ch[f], ch[f]]
然后,就是新建一个名为YOLOv8_iRMB.yaml的配置文件:(路径:ultralytics/cfg/models/v8/YOLOv8_iRMB.yaml)其中参数中nc,由自己的数据集决定。本文测试,采用的coco8数据集,有80个类别。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call CPAM-yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, iRMB, [1024,1024]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
在根目录新建一个train.py文件,内容如下:
from ultralytics import YOLO# 加载一个模型
model = YOLO('ultralytics/cfg/models/v8/YOLOv8_iRMB.yaml') # 从YAML建立一个新模型
# 训练模型
results = model.train(data='ultralytics/cfg/datasets/coco8.yaml', epochs=1,imgsz=640,optimizer="SGD")
训练输出:


五、总结
以上就是iRMB的原理及使用方式,但具体iRMB注意力机制的具体位置放哪里,效果更好。需要根据不同的数据集做相应的实验验证。希望本文能够帮助你入门YOLO中注意力机制的使用。
相关文章:
YOLOv8改进 - 注意力篇 - 引入iRMB注意力机制
#YOLO# #目标检测# #计算机视觉# 一、本文介绍 作为入门性篇章,这里介绍了iRMB注意力在YOLOv8中的使用。包含iRMB原理分析,iRMB的代码、iRMB的使用方法、以及添加以后的yaml文件及运行记录。 二、iRMB原理分析 iRMB官方论文地址:文章 iR…...
项目学习总结
文章目录 项目学习总结项目中的vw适配vw使用 封装axios实例axios常见请求配置axios响应结构axios拦截器配置Vue Router全局前置守卫 项目学习总结 在智慧商城项目中的学习总结。 项目中的vw适配 vw 是一种长度单位,代表视口宽度的百分比。1vw 等于视口宽度的1%。…...
用于低成本接收机的LoRa SF11 500KHz波形检测解调算法
前一篇里,获取了LORAwan的物理层波形,并通过Octave查看了它的瞬时频率。LoRa是私有协议,网上已经有了很不错的开源的实现,如: S2_LoRa通信实验 LoRaPhy 以及GNU-Radio的Lora模块、LimeSDR的Lora实现。当我试图修改上…...
WEB防护
WEB防护的范围比较广,主要是指针对web安全而做的各种防御措施, 包含应对xss、csrf等漏洞攻击的应对方式。 Web防护是通过执行一系列针对HTTP/HTTPS的安全策略来专门为Web应用提供保护的一款产品, 主要用于防御针对网络应用层的攻击࿰…...
使用Jest进行JavaScript单元测试
💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 使用Jest进行JavaScript单元测试 引言 Jest 简介 安装 Jest 创建基本配置 编写测试用例 运行测试 快照测试 模拟函数 代码覆盖率…...
网络安全法详细介绍——爬虫教程
目录 [TOC](目录)一、网络安全法详细介绍1. 网络安全法的主要条款与作用2. 网络安全法与爬虫的关系3. 合法使用爬虫的指南 二、爬虫的详细教程1. 准备环境与安装工具2. 使用requests库发送请求3. 解析HTML内容4. 使用robots.txt规范爬虫行为5. 设置请求间隔6. 数据清洗与存储 三…...
PCB什么情况该敷铜,什么情况不该敷铜!
更多电路设计,PCB设计分享及分析,可关注本人微信公众号“核桃设计分享”! 这个是老生常谈的问题了,可私底下还是有很多小伙伴问核桃这个问题,所以今天就好好聊一聊这个话题。 先说结论:PCB不是什么时候都可…...
标准化的企业级信息管理系统信息中心必备PHP低代码平台
谈谈企业级信息管理系统! 1. 标准化的企业级信息管理系统是信息中心必备,这才是集团该用的信息化管理系统。其有个很大特点是便于开发,能服务于企业技术中心,为其提供强大工具能力,在工具能力架构下通过流程、表单、报…...
Rust 力扣 - 1984. 学生分数的最小差值
文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 原数组 nums 排序,遍历nums中下标为[0, nums.len() - k]的学生分数 假设当前遍历的下标为i则,以 i 下标为最小值的学生分数的最小差值为nums[i k - 1] - nums[i] 取最小差值的最小值即…...
【098】基于SpringBoot+Vue实现的垃圾分类系统
系统介绍 视频演示 基于SpringBootVue实现的垃圾分类系统 基于SpringBootVue实现的垃圾分类系统设计了三种角色、分别是管理员、垃圾分类管理员、用户,实现了个人中心、用户管理、垃圾分类管理员管理、垃圾分类管理、垃圾类型管理、垃圾图谱管理、系统管理等功能 …...
STM32CUBEIDE FreeRTOS操作教程(八):queues多队列
STM32CUBEIDE FreeRTOS操作教程(八):queues多队列 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例&#…...
SIGNAL TAP使用记录
一、首先编译工程 二、打开signal tap,并设置抓取时钟以及采样深度 二、点击set up,然后双击空白处,会弹出右侧窗口,点击filter选择pre_synthesis,这里选择综合前的信号观测,要确保左侧窗口内的信号是黑色…...
基于vue3和elementPlus的el-tree组件,实现树结构穿梭框,支持数据回显和懒加载
一、功能 功能描述 数据双向穿梭:支持从左侧向右侧转移数据,以及从右侧向左侧转移数据。懒加载支持:支持懒加载数据,适用于大数据量的情况。多种展示形式:右侧列表支持以树形结构或列表形式展示。全选与反选…...
彻底理解链表(LinkedList)结构
目录 比较操作结构封装单向链表实现面试题 循环链表实现 双向链表实现 链表(Linked List)是一种线性数据结构,由一组节点(Node)组成,每个节点包含两个部分:数据域(存储数据ÿ…...
TON 区块链开发的深入概述#TON链开发#DAPP开发#交易平台#NFT#Gamefi链游
区块链开发领域发展迅速,各种平台为开发人员提供不同的生态系统。其中一个更有趣且越来越相关的区块链是TON(开放网络)区块链。TON 区块链最初由 Telegram 构思,旨在提供快速、安全且可扩展的去中心化应用程序 (dApp)。凭借其独特…...
Hive专栏概述
Hive专栏概述 Hive“出身名门”,是最初由Facebook公司开发的数据仓库工具。它简单且容易上手,是深入学习Hadoop技术的一个很好的切入点。专栏内容包括:Hive的安装和配置,其核心组件和架构,Hive数据操作语言,…...
鼠标悬停后出现小提示框实现方法
大家在网页上会经常看到某些图标或文字,当鼠标悬停后会在四周某个位置出现一个简短的文字提示,这种提示分为两种,一种是提示固定的文字,例如放在qq图标上,会显示固定的文字“QQ”;第二种是显示鼠标所在标签…...
计算机视觉常用数据集Foggy Cityscapes的介绍、下载、转为YOLO格式进行训练
我在寻找Foggy Cityscapes数据集的时候花了一番功夫,因为官网下载需要用公司或学校邮箱邮箱注册账号,等待审核通过后才能进行下载数据集。并且一开始我也并不了解Foggy Cityscapes的格式和内容是什么样的,现在我弄明白后写下这篇文章…...
css中的样式穿透
1. >>> 操作符 <style scoped> /* 影响子组件的样式 */ .parent >>> .child {color: red; } </style>注意:>>> 操作符在某些预处理器(如Sass)中可能无法识别,因为它不是标准的CSS语法。 …...
MMCA:多模态动态权重更新,视觉定位新SOTA | ACM MM‘24 Oral
来源:晓飞的算法工程笔记 公众号,转载请注明出处 论文: Visual Grounding with Multi-modal Conditional Adaptation 论文地址:https://arxiv.org/abs/2409.04999论文代码:https://github.com/Mr-Bigworth/MMCA 创新点 提出了多模…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...
2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版
1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...
