NSET or MSET算法--原理解析
1.背景
- NSET/MSET是一种非线性的多元预测诊断技术,广泛应用于系统状态估计、故障诊断和预测等领域;相比于传统的线性模型和方法,NSET/MSET能够更好地处理非线性系统,并提供更准确的预测和诊断能力。
- 在早期,MSET融合了模式识别技术和序贯概率比检验方法,主要应用于核电厂信号验证、仪表精度监控以及组件运行失常等监控场景的研究工作。
2.应用
- 工业监控:MSET可用于监测和预测工业设备的状态和性能。通过分析传感器数据和监测参数,MSET可以实时监测设备的运行状态,及时检测异常情况,预测设备故障,并提供预警和维修建议。
- 电力系统:MSET可以用于电力系统的状态估计和故障检测。它可以通过分析电力系统中的电流、电压、频率等参数,实时监测电力系统的运行状态,检测潜在的故障或异常情况,并提供故障诊断和恢复策略。
3.概念原理
3.1流程简介
非线性状态估计(NSET)方法是将当前运行数据和已生成的历史运行状态进行对比,计算并比较多状态变量之间的相似度,从而进行故障预警的方法。
3.2流程图
3.3逐步解析
1)观测矩阵
观测矩阵形象的表示就是一组多变量多步时间数据,其中有m个时间状态,每个时间状态有n个变量数据。
( x 11 x 12 . . . x 1 m x 21 x 22 . . . x 2 m . . . . . . . . . . . . x n 1 x n 2 . . . x n m ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x11 & x12 & ... & x1m\\ %第一行元素 x21 & x22 & ... & x2m\\ %第二行元素 ... & ... & ... & ...\\ xn1 & xn2 & ... & xnm\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x11x21...xn1x12x22...xn2............x1mx2m...xnm
2)训练数据
训练数据K包含系统全范围的动态参数,涵盖的面一定要全,包含了开始运行、运行平稳、运行结束等阶段数据,而且一定不能包含故障数据。
K = [ X ( t 1 + i ) , X ( t 2 + i ) , X ( t k + i ) ] K=[X(t_{1+i}),X(t_{2+i}),X(t_{k+i})] K=[X(t1+i),X(t2+i),X(tk+i)]
3)记忆矩阵
从训练数据中抽取一部分代表性数据,可以组成过程记忆矩阵D,过程记忆矩阵大小为nXd,其中d表示为包含状态的数量,n表示为了观测参数的维度。
( x 1 ( t 1 ) . . . x 1 ( t d ) . . . . . . . . . x n ( t 1 ) . . . x n ( t d ) ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x_1(t_1) & ... & x_1(t_d)\\ %第一行元素 ... & ... & ...\\ %第二行元素 x_n(t_1) & ... & x_n(t_d)\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x1(t1)...xn(t1).........x1(td)...xn(td)
4)剩余训练数据
训练数据中除去记忆矩阵的剩余部分,将会组成剩余训练数据L
5)当前系统估计矩阵
Xobs是当前系统观测矩阵,如果想要求当前系统的估计矩阵,那么就需要使用观测矩阵乘以某个大小相同的权重矩阵,即:
X e s t = D ⋅ W X_{est}=D·W Xest=D⋅W
权值矩阵W为表征状态估计和过程记忆矩阵间相似性测度的大小,为了让Xobs和Xest的残差值最小化,进行求解
6)求解过程
目标函数: m i n ϵ 2 = m i n [ ( X o b s − D ⋅ W ) T ⋅ ( X o b s − D ⋅ W ) ] 目标函数:min\epsilon^2=min[(X_{obs}-D·W)^T·(X_{obs}-D·W)] 目标函数:minϵ2=min[(Xobs−D⋅W)T⋅(Xobs−D⋅W)]
最小二乘解: W = ( D T ⋅ D ) − 1 ⋅ ( D T ⋅ D o b s ) 最小二乘解:W=(D^T·D)^{-1}·(D^T·D_{obs}) 最小二乘解:W=(DT⋅D)−1⋅(DT⋅Dobs)
大多数系统的状态数据间都会存在一定的相关性,数据之间的相关性会导致矩阵不可逆,限制了权值的求取。NSET方法利用基于相似性原理的相似性运算符代替点积,通过计算数据状态间的相似程度来表征其权值,解决数据相关所造成的矩阵不可逆。
相似性运算符号: ⊗ 相似性运算符号:\otimes 相似性运算符号:⊗
W = ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) W=(D^T\otimes D)^{-1}·(D^T\otimes D_{obs}) W=(DT⊗D)−1⋅(DT⊗Dobs)
最终,系统当前的状态估计矩阵与观测矩阵关系如下结果:
X e s t = D ⋅ ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) X_{est}=D·(D^T \otimes D)^{-1}·(D^T\otimes D_{obs}) Xest=D⋅(DT⊗D)−1⋅(DT⊗Dobs)
相关文章:

NSET or MSET算法--原理解析
1.背景 NSET/MSET是一种非线性的多元预测诊断技术,广泛应用于系统状态估计、故障诊断和预测等领域;相比于传统的线性模型和方法,NSET/MSET能够更好地处理非线性系统,并提供更准确的预测和诊断能力。在早期,MSET融合了…...

NC6 系统配置的消息渠道配置配置涉及相关的表,用户使用admin登录
NC6 系统配置的消息渠道配置配置涉及相关的表 --电子邮件、公共短信属性值配置表,比如邮箱类型、邮件发送服务器、用户、密码、发件人地址、url等。 SELECT * FROM sm_msg_stypeprop;--消息发送方式配置:电子邮件,公共短信。 SELECT * FROM sm_msg_stypebase WHERE active …...
PXC数据库性能测试对比
mysql单机 #初始化测试数据 sysbench /usr/share/sysbench/oltp_read_write.lua --mysql-host=xxx.xxx.xxx.xxx --mysql-db=test --mysql-user=hzhadmin --mysql-password=Admi --tables=10 --table-size=1000000 prepare#运行性能测试 sysbench /usr/share/sysbench/oltp_rea…...
使用AutoMySQLBackup 数据库自动备份
1.下载地址 AutoMySQLBackup的下在地址为http://sourceforge.net/projects/automysqlbackup/ 。 目前最新版本为automysqlbackup-v3.0_rc6.tar.gz 2.解压缩 把下载的automysqlbackup-v3.0_rc6.tar.gz文件拷贝到/usr/tmp下面 在/usr/local下面新建一个automysqlbackup文件夹…...

NVR批量管理软件/平台EasyNVR多个NVR同时管理支持对接阿里云、腾讯云、天翼云、亚马逊S3云存储
随着云计算技术的日益成熟,越来越多的企业开始将其业务迁移到云端,以享受更为灵活、高效且经济的服务模式。在视频监控领域,云存储因其强大的数据处理能力和弹性扩展性,成为视频数据存储的理想选择。NVR批量管理软件/平台EasyNVR&…...
13.React useTimeout
在 React 应用中,延迟执行某些操作是一个常见需求。传统的 setTimeout 在函数组件中使用可能会导致一些问题,如闭包陷阱或难以正确清理。useTimeout 钩子提供了一种声明式的方法来实现延迟执行,使得定时器的管理更加简单和可靠。这个自定义钩子不仅简化了定时器的使用,还解…...
Android待机问题与内存泄露日志定位及bugreport获取分析
文章目录 bugreportbugreport介绍获取bugreport日志分析bugreport安卓平台log获取日志android.logkernel.logkernel.log查看待机过程sysinfo.log判断内存是否有泄露分析bugreport,定位唤醒源,判断是否有ANR。分析安卓log,定位待机唤醒功耗问题,判断是否有内存泄露。bugrepo…...

访问控制技术原理与应用
目录 访问控制概述实现访问控制目标访问控制参考模型常见访问控制模型访问控制模型-DAC自主访问控制访问控制模型-MAC强制访问控制访问控制模型-RBAC基于角色的访问控制访问控制模型-ABAC基于属性的访问控制 访问控制概述 访问控制是对资源对象的访问授权控制的方法以及运行机…...
详解Rust标准库:Vec向量
查看本地官方文档 安装rust后运行 rustup doc查看The Standard Library即可获取标准库内容 std::vec::Vec定义 Vec除了可以作为动态数组还可以模拟为一个栈,仅使用push、pop即可 Vec默认分配在堆上,对于一个容量为4,有两个元素a、b的向量…...

网络原理(初一,TCP/IP五层(或四层)模型面试问题)
TCP/IP五层(或四层)模型 TCP/IP是⼀组协议的代名词,它还包括许多协议,组成了TCP/IP协议簇。 TCP/IP通讯协议采⽤了5层的层级结构,每⼀层都呼叫它的下⼀层所提供的⽹络来完成⾃⼰的需求。 • 应⽤层:负责…...

Unity引擎材质球残留贴图引用的处理
大家好,我是阿赵。 这次来分享一下Unity引擎材质球残留贴图引用的处理 一、 问题 在使用Unity调整美术效果的时候,我们很经常会有这样的操作,比如: 1、 同一个材质球切换不同的Shader、 比如我现在有2个Shader,…...
Flutter鸿蒙next中封装一个列表组件
1. 创建Flutter项目 首先,确保你已经安装了Flutter SDK,并创建一个新的Flutter项目: flutter create podcast_app cd podcast_app2. 封装列表组件 我们将在lib目录下创建一个新的文件,命名为podcast_list.dart,用于…...

层次与网络的视觉对话:树图与力引导布局的双剑合璧
目录 目的内容树图绘制目的步骤参考代码结果与分析 力引导布局算法目的参考代码结果与分析 总结 目的 掌握常用可视化软件与工具:学习和熟练使用常用的数据可视化软件和工具,如Matplotlib、Seaborn、Plotly、Tableau等。这些工具提供了用于创建图表、图…...

python将数据集中所有文件名升序制作txt文件(医学影像)
import os import re # 设定图像文件所在的路径 img_path ./2d/images/ #需修改路径 # 获取该路径下的所有文件名 img_list os.listdir(img_path) # 过滤出以.nii结尾的文件名 nii_list [f for f in img_list if f.endswith(.nii)] # 使用正则表达式从文件名中提…...

【The Art of Unit Testing 3_自学笔记06】3.4 + 3.5 单元测试核心技能之:函数式注入与模块化注入的解决方案简介
文章目录 3.4 函数式依赖注入技术 Functional injection techniques3.5 模块化依赖注入技术 Modular injection techniques 写在前面 上一篇的最后部分对第三章后续内容做了一个概括性的梳理,并给出了断开依赖项的最简单的实现方案,函数参数值注入法。本…...

【VSCode】配置
安装插件 C vscode-icons gdb调试 https://www.bilibili.com/video/BV15U4y1x7b2/?spm_id_from333.999.0.0&vd_sourcedf0ce73d9b9b61e6d4771898f1441f7f https://www.bilibili.com/video/BV1pU4y1W74Z?spm_id_from333.788.recommend_more_video.-1&vd_sourcedf0…...
Linux 常用命令整理大全及命令使用心得
本文章是为了总结自己用过的命令,以及一些心得,网上有很多类似的,但自己总结才能更好的理解。 文章目录 一、文件和目录管理01、 ls :列出目录内容02、cd:更改当前目录03、pwd:显示当前工作目录04、mkdir&a…...
计算器的实现
计算器的⼀般实现 计算器的一般实现:优化:使⽤函数指针数组的实现: 计算器的一般实现: #include <stdio.h> int add(int a, int b) {return a b; } int sub(int a, int b) {return a - b; } int mul(int a, int b) {retur…...

这个工具帮你快速实现数据集成和同步
在这个信息爆炸的时代,数据的流动和同步逐渐成为企业运营的命脉。然而,企业正面临着前所未有的数据挑战,无论是跨地域的分公司协作,还是云服务与本地数据库的交互,数据的集成、清洗、转换和加载(ETL&#x…...

论文阅读:Computational Long Exposure Mobile Photography (一)
这篇文章是谷歌发表在 2023 ACM transaction on Graphic 上的一篇文章,介绍如何在手机摄影中实现长曝光的一些拍摄效果。 Abstract 长曝光摄影能拍出令人惊叹的影像,用运动模糊来呈现场景中的移动元素。它通常有两种模式,分别产生前景模糊或…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...