当前位置: 首页 > news >正文

pairwise算法之rank svm

众所周知,point-wise/pair-wise/list-wise是机器学习领域中重要的几种建模方法。比如,最常见的分类算法使用了point-wise,即一条样本对应一个label(0/1),根据多条正负样本,使用交叉熵(cross entropy)等方法构建损失函数,来训练模型。

顾名思义,Pairwise方法是一种基于样本对比较的排序方法。它的基本思想是每次选取一对样本,比较这两个样本的顺序关系,然后通过不断调整模型参数,使得模型能够更好地预测这种顺序关系。在Pairwise排序学习中,关注的是任意两个文档(或其他项目)之间的相对顺序,而不是整个列表的全局顺序。它的优缺点如下:

● 优点:训练速度快,因为它每次只需要比较一对样本。此外,它在测试设计中能够有效减少所需的测试用例数量,同时保持较高的覆盖率。

● 缺点:只考虑了样本对的相对顺序,而忽略了整个列表的全局顺序信息。这可能会导致在某些情况下排序结果不如基于全局顺序的方法准确。

有个细节值得特别注意:pairwise在训练时使用了一个pair(包含两条样本)作为输入,但预测的时候是可以对单个样本进行打分,这样才可以高效地用于模型的线上打分。

下面,介绍一个经典的pairwise算法:rank svm,它的设计非常巧妙,值得学习:

Rank SVM是一种在机器学习中用于解决排序问题(Learning to Rank, LTR)的方法,基本思想是通过将排序问题转化为分类问题来解决。给定一个查询q和相关文档集合,Rank SVM的目标是学习一个排序模型,该模型能够根据相关性对文档进行排序。具体来说,如果文档di比文档dj更相关,则Rank SVM会鼓励模型给出的分数使得di的分数高于dj。通过一个简单的例子来说明Rank SVM在信息检索中的应用,特别是在搜索引擎中的网页排序问题中如何工作。

假设用户在搜索引擎中输入了查询词“机器学习”,搜索引擎返回了以下四个结果,并且我们已经有了这些结果的相关性标签(相关=1,不相关=0):

  1. 页面A:关于机器学习的介绍(相关=1)
  2. 页面B:机器学习算法的讨论(相关=1)
  3. 页面C:家用电器的使用说明(相关=0)
  4. 页面D:机器学习在商业中的应用(相关=1)
    Rank SVM的训练过程:
  5. 构建Pairwise对:
    ○ Rank SVM需要构建Pairwise对来比较文档的相关性。在这个例子中,我们可以构建以下Pairwise对:
    ■ (A, C):A比C更相关
    ■ (B, C):B比C更相关
    ■ (D, C):D比C更相关
    ■ (A, D):A和D都是相关的,但A的排名可能更高,因为它更全面
    ■ (B, D):B和D都是相关的,但B的排名可能更高,因为它更专注于算法
  6. 特征提取:
    ○ 对于每一对文档,我们需要提取特征向量。这些特征可能包括文本特征(如TF-IDF值)、用户行为数据(如点击率)、页面质量指标等。
  7. 训练模型:
    ○ 使用上述Pairwise对和特征向量,Rank SVM训练一个模型,该模型试图找到一个超平面,使得所有正样本对(更相关的文档有更高的分数)被正确排序,而负样本对(更相关的文档有更低的分数)被错误排序。
  8. 优化目标:
    ○ 对于SVM,其优化目标是最小化违反Pairwise对的总数(即hinge loss),同时通过正则化项控制模型的复杂度。
  9. 模型预测:
    ○ 一旦模型被训练,它可以用来对新的查询结果进行排序。给定一个新的查询和一组结果,模型会为每个结果计算一个分数,然后根据这些分数对结果进行排序。

在这个例子中,Rank SVM模型学习了如何根据特征和相关性标签来排序页面。在实际应用中,Rank SVM模型会处理更复杂的数据集,包含更多的特征和样本,以实现更准确的排序。通过这种方式,Rank SVM可以帮助搜索引擎提供更相关、更高质量的搜索结果。

其实,在针对实际问题的求解过程中,经常会在point-wise基础上引入一些pairwise的loss,实现两种方法的优缺互补,并且对数据分布进行更为细致的建模。

相关文章:

pairwise算法之rank svm

众所周知,point-wise/pair-wise/list-wise是机器学习领域中重要的几种建模方法。比如,最常见的分类算法使用了point-wise,即一条样本对应一个label(0/1),根据多条正负样本,使用交叉熵(cross entropy&#x…...

SAP RFC 用户安全授权

一、SAP 通讯用户 对于RFC接口的用户,使用五种用户类型之一的“通讯”类型,这种类型的用户没有登陆SAPGUI的权限。 二、对调用的RFC授权 在通讯用户内部,权限对象:S_RFC中,限制进一步可以调用的RFC函数授权&#xff…...

记录新建wordpress站的实践踩坑:wordpress 上传源码新建站因权限问题导致无法访问、配置新站建站向导以及插件主题上传配置的解决办法

官方文档:How to install WordPress – Advanced Administration Handbook | Developer.WordPress.org 但是没写权限问题,可以下载到 wordpress官方包。 把下载的wordpresscn的包解压并上传到服务器目录下,但是因为是root上传导致了权限问题…...

为啥学习数据结构和算法

基础知识就像是一座大楼的地基,它决定了我们的技术高度。而要想快速做出点事情,前提条件一定是基础能力过硬,“内功”要到位。 想要通关大厂面试,千万别让数据结构和算法拖了后腿 我们学任何知识都是为了“用”的,是为…...

Java - 免费图文识别_Java_免费_图片转文字_文字识别_spring ai_spring ai alibaba

本文主要是介绍借助阿里云免费的大模型额度来做高质量的图转文识别,图片转文字,或者文字识别都可以使用,比传统的OCR模式要直接和高效很多 。 本文使用的技术是spring ai qwen vl 。 Qwen vl有 100万Token 免费额度,可以用来免费…...

《JVM第6课》本地方法栈

文章目录 1 什么是本地方法1.1 本地方法的好处1.2 声明本地方法1.3 实现本地方法1. 生成头文件2. 编写C语言实现3. 编译C代码4. 运行Java程序 1.4 使用JNA1.5 总结 2 本地方法栈2.1 特点2.2 本地方法栈与Java虚拟机栈的区别2.3 本地方法栈的工作流程2.4 总结 无痛快速学习入门J…...

3.1 快速启动Flink集群

文章目录 1. 环境配置2. 本地启动3. 集群启动4. 向集群提交作业4.1 提交作业概述4.2 添加打包插件4.3 将项目打包4.4 在Web UI上提交作业4.5 命令行提交作业 在本实战中,我们将快速启动Apache Flink 1.13.0集群,并在Hadoop集群环境中提交作业。首先&…...

如何设计一个毫秒级的接口?

设计一个毫秒级的接口需要考虑多个方面,包括网络延迟、服务器性能、代码效率、数据库查询优化等。以下是一些建议,帮助你设计一个毫秒级的接口: 网络优化: 使用HTTP/2或更高版本,以减少连接建立和传输的开销。尽可能减…...

从语义实施工程师到大数据开发工程师的职业转型

在信息技术行业,随着数据驱动决策的流行和企业对大数据需求的急剧增加,越来越多的专业人士开始考虑将他们的技能转移到大数据领域。本文将探讨如何从一个语义实施工程师转变为一个大数据开发工程师。两者虽然都与数据密切相关,但在技术重点和…...

关联容器笔记

关联容器总结 有序关联容器 键值的顺序自动排序&#xff0c;键值必须支持 < 操作符 底层数据结构 使用平衡树&#xff0c;比如&#xff08;红黑树&#xff09;增删查的平均时间复杂度接近 O(log⁡n) 种类 std::set&#xff1a;集合&#xff0c;包含唯一的键元素。 std…...

在阿里云快速启动Umami玩转网页分析

阿里云计算巢提供了Umami快速部署能力&#xff0c;使用者不需要自己下载代码&#xff0c;不需要自己安装复杂的依赖&#xff0c;不需要了解底层技术&#xff0c;只需要在控制台图形界面点击几下鼠标就可以快速部署并启动Umami&#xff0c;非技术同学也能轻松搞定。 什么是Umam…...

Linux练习作业

1.搭建dns服务器能够对自定义的正向或者反向域完成数据解析查询。 2.配置从DNS服务器&#xff0c;对主dns服务器进行数据备份 环境准备 主从服务器都需要进行的操作#关闭防火墙、SELinnux systemctl stop firewalld setenforce 0#软件安装 yum install bind -y实验一&#…...

FFMPEG录屏(21)--- Linux 下基于X11枚举所有可见窗口,并获取标题、图标、缩略图、进程路径等信息

在 Linux X11 下枚举窗口并获取窗口信息 在 Linux 系统中&#xff0c;X11 是一个非常流行的窗口系统&#xff0c;它提供了丰富的 API 用于管理和操作窗口。在这篇博客中&#xff0c;我们将详细介绍如何使用 X11 枚举当前系统中的窗口&#xff0c;并获取它们的标题、截图、进程…...

mybatis resultMap标签注意事项(pageHelper结合使用的坑)

背景 使用pageHelper时&#xff0c;发现分页数据异常&#xff0c;经过排查发现是resultMap 的问题。 resultMap介绍 在使用mybatis时&#xff0c;我们经常会使用在xml文件中编写一些复杂的sql语句&#xff0c;例如多表的join&#xff0c;在映射实体类时&#xff0c;又会使用…...

100种算法【Python版】第33篇——Tonelli-Shanks算法

本文目录 1 模素数下的二次剩余问题2 算法原理2.1 背景知识2.2 算法步骤3 算法示例4 python代码5 算法应用1 模素数下的二次剩余问题 在数论中,给定一个素数 p p p 和一个整数 n n n...

深度学习基础知识-全连接层

全连接&#xff08;Fully Connected&#xff0c;简称 FC&#xff09;层是深度学习神经网络中一种基本的层结构。它主要用于神经网络的最后几层&#xff0c;将高层特征映射到输出空间中。全连接层对数据的每个输入节点与每个输出节点进行连接&#xff0c;用于实现输入特征和输出…...

ffmpeg 提取mp4文件中的音频文件并保存

要从一个 MP4 文件中提取音频并保存为单独的音频文件&#xff0c;可以使用 ffmpeg 工具。以下是一个简单的命令示例&#xff1a; 命令格式 ffmpeg -i input.mp4 -vn -acodec copy output.mp3 参数解释 -i input.mp4: 指定输入文件为 input.mp4。 -vn: 禁用视频流&#xff0…...

【MySQL 保姆级教学】 复合查询--超级详细(10)

复合查询 1. 复合查询的作用2. 创建将进行操作的表2.1 员工表 emp2.2 部门表 dept2.3 薪资等级表 3. 基本查询回顾4. 多表查询4.1 多表查询的定义4.2 笛卡尔积4.3 内连接 inner join4.4 交叉连接 cross join4.5 左外连接 left join4.6 右外连接 right join4.7 自连接 5. 子查询…...

ONLYOFFICE:数字化办公的创新解决方案与高效协作平台

目录 前言—— 关于 ONLYOFFICE 桌面编辑器 1.首页介绍 2.电子表格 功能介绍 适用场景 3.ONLYOFFICE 在线Word功能 4.ONLYOFFICE 在线PPT功能 5.共同办公室 6.探索其他 总结 前言—— 在数字化办公的时代&#xff0c;传统的办公软件常常让人感到束缚与低效。而 ONLY…...

编译Kernel时遇到“error: ‘linux/compiler_types.h‘ file not found“的解决方法

问题描述&#xff1a; 在下载了一份安卓13项目的代码后进行make bootimage编译时遇到了下面编译报错&#xff1a; In file included from /home/bspuser/scode/kernel/msm-4.19/include/uapi/linux/stat.h:5: In file included from /home/bspuser/scode/kernel/msm-4.19/inc…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...