当前位置: 首页 > news >正文

百度如何打造AI原生研发新范式?

👉点击即可下载《百度AI原生研发新范式实践》资料

2024年10月23-25日,2024 NJSD技术盛典暨第十届NJSD软件开发者大会、第八届IAS互联网架构大会在南京召开。本届大会邀请了工业界和学术界的专家,优秀的工程师和产品经理,以及其它行业领军人物,分享交流经验和心得。

百度文心快码总经理,工程效能部总监臧志出席大会开幕式,并分享了《AI原生研发新范式的实践与思考》。在大模型赋能下,研发过程正在发生一场深刻变革。面对这样的变革,如何在公司和行业中拥抱和落地,是百度一个重要的探索方向。

在本次大会上,臧志阐释了AI原生研发新范式的内涵,分享了从两个方面快速推动建设和落地的经验。一方面,是推进以数据+大模型为基础的研发方式,实现需求交付模式的变革,也称为AI换道交付。另一方面,是推进AI赋能和重构研发的全流程,实现生产力的倍增,称之为人机协同。

具体来看,以数据+大模型为基础的研发方式,将围绕着大模型作为核心的能力供给,通过Prompt工程和数据工程,来实现需求的交付。对于Promot工程来说,是通过改变自己,来适配和发掘大模型在目标任务上的表现,是大家最常用和首先应该使用的方式,也是百度各个应用侧最普及的方式。而数据工程,则比较复杂,在通过Prompt不容易达成目标任务效果的时候,则需要针对任务来准备数据,改变大模型,来支撑我们的能力。

想要在整个公司落地这套研发方式,需要有一整套体系来沉淀大家的实践经验,形成正向循环和平台化的效应。除了最基础的模型、模型服务、研发工具之外,更重要的是去挖掘和激发各个业务的实践,总结成为流程规范,通过平台化的方式来形成复制。如果实践成熟,会形成指南,如果公司对于指南的做法形成更为统一的看法,会做成规范。也就是通过实践+规范指南+工具平台,这一套组合,支撑和促进了公司内AI原生开发的大幅增长,以及效率的提升。从年初到现在,我们的应用数增加了76%,现在这类应用能占到公司整体应用的10%以上,超过50%的工程师开发过Prompt,在数据飞轮和数据流程上也实现了50%的提效。

臧志在阐释了AI原生研发新范式的具体内涵之后,也分享了百度在AI赋能研发领域的探索和实践经验。

AI赋能研发的领域最近非常热,行业大致会按照AI辅助的贡献来分为五个阶段。在一家企业落地,不是简单的一个阶段,而是复杂任务的组合,因此前面提到的几个阶段,会同时存在,共同推进。总结起来,这由两个要素来决定:一个是任务的复杂度,这包括任务的粒度有大有小,是否跟其他的代码库或系统有耦合。另一个因素,是人的参与方式,这包括以人为主到机器为主,更抽象的表达方式等等。

在这个过程中,我们发现研发智能化是所有研发团队的共识。通过智能化首先会提升效率,也会更容易的落地一些先进理念,比如测试左移等主张。每个研发团队也都会在这个共识下,去思考结合他们的研发场景,他们需要的更先进的基础设施是什么。所以,在一个企业的研发智能化落地过程中,如何调动和组织起各个团队的积极性至关重要。

百度在智能编码领域已经探索了两年,文心快码已在公司内部被数万名工程师使用。百度每天生成的代码中,有30%由文心快码生成,整体采纳率达46%,这一提效工具的应用令工程师整体提效达到12%。文心快码的应用不仅提高了研发效率,也显著提升了代码质量。在百度内部实践中,文心快码安全漏洞扫描准确率已超过95%,并有83%的扫描漏洞已被修复闭环。

同时,百度通过文心快码的内外部的实践经验,已经总结出一套标准化的落地流程以及最佳实践,通过实施人机协同原则和构建落地执行体系,促进企业工程文化的转变和数据驱动价值闭环。

除了帮助百度内部数万名工程师提升研发效率和质量之外,文心快码也已应用于吉利汽车、顺丰科技、方正证券、华农保险、喜马拉雅、同程旅行、名创优品、上海三菱电梯等万家企业客户,覆盖汽车、金融、物流、互联网、机械制造、软件服务、集成电路等行业领域。文心快码在企业的落地实践案例,也获得了权威机构的认可,成为行业最佳实践标杆应用

相关文章:

百度如何打造AI原生研发新范式?

👉点击即可下载《百度AI原生研发新范式实践》资料 2024年10月23-25日,2024 NJSD技术盛典暨第十届NJSD软件开发者大会、第八届IAS互联网架构大会在南京召开。本届大会邀请了工业界和学术界的专家,优秀的工程师和产品经理,以及其它行…...

RedisTemplate类中的常用方法粗解(简单明了,预计5分钟看完)

在阅读项目代码过程中发现引用RedisTemplate 的方法操作redis时&#xff0c;都会有一些特定的ops &#xff0c;对此好奇就查资料的情况下有了本博客。 操作之前付一张我们项目中的用到的地方的图 另外本文中的语言用到的是Java&#xff0c;附上试验用到的redisTemplete依赖 <…...

鸿蒙ArkTS中的布局容器组件(Column、Row、Flex、 Stack、Grid)

在鸿蒙ArkTS中&#xff0c;布局容器组件有很多&#xff0c;常见的有&#xff1a;   ⑴ Column&#xff1a;&#xff08;垂直布局容器&#xff09;&#xff1a;用于将子组件垂直排列。   ⑵ Row&#xff1a;&#xff08;水平布局容器&#xff09;&#xff1a;用于将子组件水…...

显存占用 显存测试

目录 显存测试 显存占用示例 一个模型多卡占用 显存测试 import torch# 计算张量的大小&#xff08;例如&#xff1a;每个 float 占用 4 字节&#xff09; # 40GB 40 * 1024 * 1024 * 1024 字节 # 每个 float 4 字节&#xff0c;因此需要的 float 数量为 (40 * 1024 * 1024…...

快速入门CSS

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗 如有错误&#xff0c;欢迎指出~ 目录 CSS css的三种引入方式 css书写规范 选择器分类 标签选择器 class选择器 id选择器 复合选择器 通配符选择器 color颜色设置 border边框设置 width/heigth 内/外边距 C…...

AcWing 1073 树的中心 树形dp (详解)

这道题目非常有新意&#xff0c;在过去&#xff0c;我们通常先访问子节点去更新父节点的状态&#xff0c;但是这道题我们还需要从父节点去更新子节点。 我们可以想象为向上和向下两个方向&#xff0c;我们任取一点&#xff0c;先向下走&#xff0c;再回来更新上面的点&#xf…...

modelscope下载Qwen2.5 72B 模型方法

conda create -n modelscope python=3.10 conda activate modelscopepip install modelscope执行这个python代码: from modelscope.hub.snapshot_download import snapshot_download# 下载模型到当前路径 model_dir = snapshot_download(...

重学SpringBoot3-整合 Elasticsearch 8.x (二)使用Repository

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 整合 Elasticsearch 8.x &#xff08;二&#xff09;使用Repository 1. 环境准备1.1 项目依赖1.2 Elasticsearch 配置 2. 使用Repository的基本步骤2.1 创建实体类2.2 创…...

为什么说模拟电路的难点就在开通过程和关断过程?难在什么地方?

模拟电路中开通过程和关断过程之所以困难&#xff0c;主要有以下几个方面的原因&#xff1a; 1. 瞬态响应特性复杂 - 在开通和关断瞬间&#xff0c;电路中的电流和电压会发生快速变化&#xff0c;产生复杂的瞬态响应。这些瞬态响应可能包含过冲、下冲、振铃等现象&#xff0c;…...

CubeIDE BUG-project‘hello‘has no explict encoding set hello

projecthellohas no explict encoding set hello 解决方法&#xff1a; 点击红色处注册账号后登录&#xff0c;删除原本文件后重新生成即可。...

在线PDF转图片网站

https://www.ilovepdf.com/download/qgxkmbzgxt6yb3s8l9f7fc3q9606hq0bfh4b33mnrf3p7tp8l0d4qy386b5dxqwjbhq7j3j4tp20m4dnb89wA9jjw25br1gtAw42l0m1sq047nvld4qqrm8kzjplkAhw9458p4wjgbmn08g49l23c1khsggdx4A7z3m9xh19mgzdlllyA6r1/52 在线excel转图片 https://www.zamzar.c…...

ps和top的区别

时间上的区别&#xff1a; ps是静态查看进程而top是动态持续监控进程 功能上的区别 ps只是查看进程,top还可以监视系统性能,如平均负载,cpu和内存的消耗 ps 常用格式&#xff1a;ps -ef &#xff08;ef简洁aux详细 System &#xff36;风格和BSD 风格&#xff09; | grep P…...

自动驾驶上市潮中,会诞生下一个“英伟达”吗?

站上科技创新潮头的企业总是备受资本青睐。20世纪开始&#xff0c;从IT到互联网&#xff0c;IBM、英特尔、微软、苹果等各大科技巨头&#xff0c;你方唱罢我登场。 近几年&#xff0c;人工智能成为资本市场新传奇故事的孕育之地。今年10月&#xff0c;英伟达市值首度突破3.5万…...

CSS 计数器:深入解析与高级应用

CSS 计数器&#xff1a;深入解析与高级应用 CSS 计数器是前端开发中一个强大但经常被忽视的功能。它们允许开发者创建和管理自定义的计数序列&#xff0c;这在处理复杂文档结构时尤其有用。本文将深入探讨 CSS 计数器的原理、用法&#xff0c;并展示一些高级应用示例。 什么是…...

【真题笔记】15年系统架构设计师要点总结

【真题笔记】15年系统架构设计师要点总结 分布式数据库中各种透明RAID 5IPv6 IPv4电子商务系统项目配置管理IPO图&#xff08;输入加工输出图&#xff09;桥接模式的UML图面向对象设计原则软件测试 在15年真题练习中&#xff0c;对错题模棱两可的考点进行重点记录与内容延申。…...

斗破C++编程入门系列之三十九:多态性:纯虚函数和抽象类(四星斗师)

斗破C目录&#xff1a; 斗破C编程入门系列之前言&#xff08;斗之气三段&#xff09; 斗破C编程入门系列之二&#xff1a;Qt的使用介绍&#xff08;斗之气三段&#xff09; 斗破C编程入门系列之三&#xff1a;数据结构&#xff08;斗之气三段&#xff09; 斗破C编程入门系列之…...

目前美国的互联网环境

随着科技的迅猛发展&#xff0c;互联网已经成为了现代社会不可或缺的一部分。作为全球科技创新的领导者之一&#xff0c;美国在互联网领域拥有着丰富的资源和先进的技术。本文将对美国目前的互联网环境进行探讨&#xff0c;包括网络基础设施、网络安全、数字经济以及互联网对社…...

从最小作用量原理推导牛顿三大定律

从最小作用量原理推导牛顿三大定律 引言 在物理学中&#xff0c;牛顿三大定律是描述经典力学中物体运动的基本定律。然而&#xff0c;这些定律并不是孤立存在的&#xff0c;它们可以从一个更为普遍的原理——最小作用量原理中推导出来。最小作用量原理是一个深刻而优雅的理论…...

【系统集成项目管理工程师教程】第4章 信息系统架构

教程内容总结&#xff0c;供参考&#xff0c;有错误请指正&#xff0c;友好交流。 4.架构基础 4.1.1指导思想 4.1.2设计原则 原则内容&#xff1a;包括坚持以人为本、创新引领、问题导向、整体协同、安全可控、科学实施等&#xff0c;这些原则应基于组织的信念和价值观&…...

docker下迁移elasticsearch的问题与解决方案

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 &#x1f38f;&#xff1a;你只管努力&#xff0c;剩下的交给时间 &#x1f3e0; &#xff1a;小破站 docker下迁移elasticsearch的问题与解决方案 数据挂载报错解决权限问题节点故障 直接上图&#x…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...