当前位置: 首页 > news >正文

乳腺癌诊断分析——基于聚类分析实现

一、研究背景

乳腺癌属于恶性肿瘤,在早期发现后需要及早将病变组织切除,而且术后还要化疗和放射等辅助治疗,能够抑制癌细胞的扩散和增长。

二、研究目的

  1. 研究乳腺癌病人的患病特征
  2. 通过聚类分析方法对特征进行分类
  3. 通过上述聚类结果对乳腺诊断给出建议

三、数据来源

机器学习(sklearn)库中美国威斯康星州乳腺癌的数据集,包含乳腺癌患者的肿瘤特征的测量值。 

breast_cancer — scikit-learnicon-default.png?t=O83Ahttps://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html

四、实验仪器

Windows 11,SPSS,PyCharm Professional,R,Jupyter Notebook

五、数据集介绍

 

5.1 数据来源

本实验数据来自机器学习中美国威斯康星州乳腺癌数据集,包含569个患有乳腺癌的人群。 

5.2 选择的病理特征

  1. 平均半径
  2. 平均纹理
  3. 平均周长
  4. 平均面积
  5. 平均平滑度
  6. 平均紧凑度
  7. 平均凹度
  8. 平均对称性
  9. 平均分形 

六、系统聚类法

6.1 近似值矩阵

 本实验使用SPSS进行操作,本文在计算距离时采用平方欧式距离,所以样品间距离越大,样品差异越大。而在计算类与类之间的距离时,本文采用的是最短距离法,在SPSS中对应为最近邻元素。如下表所示,平均周长与平均半径间距离最小,最先聚为一类。

6.2  集中趋势

 上表为SPSS输出聚类系数表,接下来使用Python进行绘图得到下面的折线图。

6.3 聚合系数与谱系图

由图1得出,当分类数大于4时,曲线的变化趋于平稳,为此分类数等于4符合分类目的。最后使用SPSS 绘制出了系统聚类的谱系图,如图2所示。

 

 通过谱系图得出四类的特征分别为:

  1. 第一类为平均半径,平均周长,平均面积,平均凹度,平均对称性,平均紧凑度,刻画了乳腺的表面特征,通过表面特征地识别出乳腺癌的患病前兆;
  2. 第二类为平均平滑度,识别诊断出乳腺癌;
  3. 第三类为平均分形,刻画了乳腺的内在因素对乳腺癌的患病前兆的识别;
  4. 第四类为平均纹理,刻画乳腺的纹理形状对乳腺癌诊断识别的重要性。

七、总结与建议

7.1 总结 

  1. 通过聚类结果,我们总结发现乳腺癌的四类病理特征: 平均半径,平均周长,平均面积,平均凹度,平均对称性;平均紧凑度; 平均平滑度; 平均分形; 平均纹理;
  2. 通过对病人的上述四类病理特征进行检测,则可以帮助初步判断乳腺癌;
  3. 在数据较少或者缺失的时候可以从这四类的特征初步判断其乳腺癌的风险。

7.2 建议

1、建立良好的生活方式,调整好生活节奏,保持心情舒畅。

2、坚持体育锻炼,积极参加社交活动,避免和减少精神、心理紧张因素,保持心态平和。

3、养成良好的饮食习惯。

  • 婴幼儿时期注意营养均衡,提倡母乳喂养。
  • 儿童发育期减少摄入过量的高蛋白和低纤维饮食。
  • 青春期不要大量摄入脂肪和动物蛋白,加强身体锻炼。
  • 绝经后控制总热量的摄入,避免肥胖。
  • 平时养成不过量摄入肉类、煎蛋、黄油、奶酪、甜食等饮食习惯,少食腌、熏、炸、烤食品,增加食用新鲜蔬菜、水果、维生素、胡萝卜素、橄榄油、鱼、豆类制品等。

4、积极治疗乳腺疾病。

5、不乱用外源性雌激素。

6、不长期过量饮酒。

相关文章:

乳腺癌诊断分析——基于聚类分析实现

一、研究背景 乳腺癌属于恶性肿瘤,在早期发现后需要及早将病变组织切除,而且术后还要化疗和放射等辅助治疗,能够抑制癌细胞的扩散和增长。 二、研究目的 研究乳腺癌病人的患病特征通过聚类分析方法对特征进行分类通过上述聚类结果对乳腺诊…...

Ubuntu 22.04 安装配置opencv

​ OpenCV下载:https://opencv.org/releases/ ​编译与安装 安装cmake OpenCV需要使用cmake进行编译 sudo apt-get install cmake安装依赖 sudo apt-get install build-essential pkg-config libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg-dev libswscale-dev lib…...

【软考】系统架构设计师-计算机系统基础(3):嵌入式系统

嵌入式系统:嵌入式处理器、相关支撑硬件、嵌入式OS、支撑软件以及应用软件 嵌入式系统特征:专用性强、技术融合、软硬一体软件为主、通用计算机资源少,... 分层(5层):硬件层 → 抽象层 → 操作系统层 → 中间件层 →…...

实测运行容器化Tomcat服务器

文章目录 前言一、拉取Tomcat 9.0镜像二、运行容器化Tomcat服务器三、访问Tomcat官网首页测试 总结 前言 运行容器化Tomcat服务器,首先确保正确安装docker,并且已启动运行,具体安装docker方法见笔者前面的博文《OpenEuler 下 Docker 安装、配…...

致敬苹果的国产手机,只会失去更多市场,iPhone一骑绝尘!

近期诸多国产手机品牌纷纷发布旗舰手机,随着这些旗舰手机的发布,可以看出他们在进一步致敬苹果--实质就是模仿苹果的设计,如此做的结果恐怕是得不偿失,将导致国产手机损失更多市场。 致敬苹果最为直接的当属手机外壳了&#xff0c…...

《MYSQL45讲》kill不掉的线程

kill query 线程id :终止这个线程正在执行的语句 kill connection 线程id :关闭这个线程的连接,也会先停止这个线程正在执行的语句。这个connection可以缺省。 本文讨论的情况是:使用了kill命令,却没有断开连接,show processli…...

单体架构 IM 系统之 Server 节点状态化分析

基于 http 短轮询模式的单体架构的 IM 系统见下图,即客户端通过 http 周期性地轮询访问 server 实现消息的即时通讯,也就是我们前面提到的 “信箱模型”。“信箱模型” 虽然实现非常容易,但是消息的实时性不高。 我们在上一篇文章&#xff08…...

java xml 文本解析

示例文本 <Message><MessageName>time_request</MessageName><Timestamp>20220217165432906359</Timestamp><Body><EQPID>CMMAB01-DTP01</EQPID></Body> </Message>示例代码 import org.w3c.dom.Document; impo…...

Docker占用空间太大磁盘空间不足清理妙招

docker占用空间太大了&#xff0c;磁盘空间不足&#xff0c;清理3妙招 清除所有已停止的容器&#xff08;container&#xff09;、未被任何容器所使用的卷&#xff08;volume&#xff09;、未被任何容器所关联的网络&#xff08;network&#xff09;、所有悬空镜像&#xff08…...

编程之路,从0开始:字符函数和字符串函数

Hello大家好&#xff01;很高兴我们又见面了&#xff01; 给生活添点passion&#xff0c;开始今天的编程之路&#xff01; 目录 1、字符分类函数 2、字符转换函数 3、字符串函数 1、 strcpy 2、 strcat 3、 strcmp 4、strlen(s) 5、strstr(s1, s2) 6、 strtok(s1, s2…...

化工防爆巡检机器人:在挑战中成长,为化工安全保驾护航

随着全球能源需求的不断攀升&#xff0c;化工行业的安全性与高效性愈发受到关注。化工设施规模巨大&#xff0c;而且其中多数存在高风险因素&#xff0c;像是易燃易爆化学物质、高温环境、有毒有害物质以及高压设备等。仅2023年&#xff0c;国内危化品事故就多达652起&#xff…...

音频采样数据格式

音频信号在模拟到数字转换时&#xff0c;会涉及到多个关键参数&#xff0c;如采样率、位深度、通道数等。下面是常见的音频采样数据格式及其相关概念&#xff1a; 1. 采样率 (Sample Rate) 采样率指的是每秒钟对音频信号进行采样的次数&#xff0c;单位为赫兹 (Hz)。常见的值…...

【pytorch】常用强化学习算法实现(持续更新)

持续更新常用的强化学习算法&#xff0c;采用单python文件实现&#xff0c;简单易读 2024.11.09 更新&#xff1a;PPO(GAE); SAC2024.11.12 更新&#xff1a;OptionCritic(PPOC) "PPO" import copy import time import torch import numpy as np import torch.nn as …...

DAY59||并查集理论基础 |寻找存在的路径

并查集理论基础 并查集主要有两个功能&#xff1a; 将两个元素添加到一个集合中。判断两个元素在不在同一个集合 代码模板 int n 1005; // n根据题目中节点数量而定&#xff0c;一般比节点数量大一点就好 vector<int> father vector<int> (n, 0); // C里的一…...

Mybatis执行自定义SQL并使用PageHelper进行分页

Mybatis执行自定义SQL并使用PageHelper进行分页 基于Mybatis&#xff0c;让程序可以执行动态传入的SQL&#xff0c;而不需要在xml或者Select语句中定义。 代码示例 pom.xml 依赖 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId&g…...

OpenCV DNN

OpenCV DNN 和 PyTorch 都是常用的深度学习框架&#xff0c;但它们的定位、使用场景和功能有所不同。让我们来对比一下这两个工具&#xff1a; 1. 框架和功能 OpenCV DNN&#xff1a;OpenCV DNN 模块主要用于加载和运行已经训练好的深度学习模型&#xff0c;支持多种深度学习…...

什么时候需要复写hashcode()和compartTo方法

在Java编程中&#xff0c;复写&#xff08;重写&#xff09;hashCode()和compareTo()方法的需求通常与对象的比较逻辑和哈希集合的使用紧密相关。但请注意&#xff0c;您提到的compartTo可能是一个拼写错误&#xff0c;正确的方法名是compareTo()。以下是关于何时需要复写这两个…...

PostgreSQL 日志文件备份

随着信息安全的建设&#xff0c;在三级等保要求中&#xff0c;要求日志至少保留半年 180 天以上。那么 PostgreSQL 如何实现这一要求呢。 我们需要配置一个定时任务&#xff0c;定时的将数据库日志 log 下的文件按照生成的规则将超过一定时间的日志拷贝到其它的路径下&#xf…...

2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序

2023年第十三届MathorCup高校数学建模挑战赛 B题 城市轨道交通列车时刻表优化问题 原题再现&#xff1a; 列车时刻表优化问题是轨道交通领域行车组织方式的经典问题之一。列车时刻表规定了列车在每个车站的到达和出发&#xff08;或通过&#xff09;时刻&#xff0c;其在实际…...

数字农业产业链整体建设方案

1. 引言 数字农业产业链整体建设方案旨在通过数字化手段提升农业产业效率与质量&#xff0c;推动农业现代化进程。方案聚焦于资源数字化、产业数字化、全局可视化与决策智能化的实现&#xff0c;构建农业产业互联网平台&#xff0c;促进农业全流程、全产业链线上一体化发展。 …...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...