乳腺癌诊断分析——基于聚类分析实现
一、研究背景
乳腺癌属于恶性肿瘤,在早期发现后需要及早将病变组织切除,而且术后还要化疗和放射等辅助治疗,能够抑制癌细胞的扩散和增长。
二、研究目的
- 研究乳腺癌病人的患病特征
- 通过聚类分析方法对特征进行分类
- 通过上述聚类结果对乳腺诊断给出建议
三、数据来源
机器学习(sklearn)库中美国威斯康星州乳腺癌的数据集,包含乳腺癌患者的肿瘤特征的测量值。
breast_cancer — scikit-learnhttps://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
四、实验仪器
Windows 11,SPSS,PyCharm Professional,R,Jupyter Notebook
五、数据集介绍
5.1 数据来源
本实验数据来自机器学习中美国威斯康星州乳腺癌数据集,包含569个患有乳腺癌的人群。
5.2 选择的病理特征
- 平均半径
- 平均纹理
- 平均周长
- 平均面积
- 平均平滑度
- 平均紧凑度
- 平均凹度
- 平均对称性
- 平均分形
六、系统聚类法
6.1 近似值矩阵
本实验使用SPSS进行操作,本文在计算距离时采用平方欧式距离,所以样品间距离越大,样品差异越大。而在计算类与类之间的距离时,本文采用的是最短距离法,在SPSS中对应为最近邻元素。如下表所示,平均周长与平均半径间距离最小,最先聚为一类。
6.2 集中趋势
上表为SPSS输出聚类系数表,接下来使用Python进行绘图得到下面的折线图。
6.3 聚合系数与谱系图
由图1得出,当分类数大于4时,曲线的变化趋于平稳,为此分类数等于4符合分类目的。最后使用SPSS 绘制出了系统聚类的谱系图,如图2所示。
通过谱系图得出四类的特征分别为:
- 第一类为平均半径,平均周长,平均面积,平均凹度,平均对称性,平均紧凑度,刻画了乳腺的表面特征,通过表面特征地识别出乳腺癌的患病前兆;
- 第二类为平均平滑度,识别诊断出乳腺癌;
- 第三类为平均分形,刻画了乳腺的内在因素对乳腺癌的患病前兆的识别;
- 第四类为平均纹理,刻画乳腺的纹理形状对乳腺癌诊断识别的重要性。
七、总结与建议
7.1 总结
- 通过聚类结果,我们总结发现乳腺癌的四类病理特征: 平均半径,平均周长,平均面积,平均凹度,平均对称性;平均紧凑度; 平均平滑度; 平均分形; 平均纹理;
- 通过对病人的上述四类病理特征进行检测,则可以帮助初步判断乳腺癌;
- 在数据较少或者缺失的时候可以从这四类的特征初步判断其乳腺癌的风险。
7.2 建议
1、建立良好的生活方式,调整好生活节奏,保持心情舒畅。
2、坚持体育锻炼,积极参加社交活动,避免和减少精神、心理紧张因素,保持心态平和。
3、养成良好的饮食习惯。
- 婴幼儿时期注意营养均衡,提倡母乳喂养。
- 儿童发育期减少摄入过量的高蛋白和低纤维饮食。
- 青春期不要大量摄入脂肪和动物蛋白,加强身体锻炼。
- 绝经后控制总热量的摄入,避免肥胖。
- 平时养成不过量摄入肉类、煎蛋、黄油、奶酪、甜食等饮食习惯,少食腌、熏、炸、烤食品,增加食用新鲜蔬菜、水果、维生素、胡萝卜素、橄榄油、鱼、豆类制品等。
4、积极治疗乳腺疾病。
5、不乱用外源性雌激素。
6、不长期过量饮酒。
相关文章:

乳腺癌诊断分析——基于聚类分析实现
一、研究背景 乳腺癌属于恶性肿瘤,在早期发现后需要及早将病变组织切除,而且术后还要化疗和放射等辅助治疗,能够抑制癌细胞的扩散和增长。 二、研究目的 研究乳腺癌病人的患病特征通过聚类分析方法对特征进行分类通过上述聚类结果对乳腺诊…...

Ubuntu 22.04 安装配置opencv
OpenCV下载:https://opencv.org/releases/ 编译与安装 安装cmake OpenCV需要使用cmake进行编译 sudo apt-get install cmake安装依赖 sudo apt-get install build-essential pkg-config libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg-dev libswscale-dev lib…...

【软考】系统架构设计师-计算机系统基础(3):嵌入式系统
嵌入式系统:嵌入式处理器、相关支撑硬件、嵌入式OS、支撑软件以及应用软件 嵌入式系统特征:专用性强、技术融合、软硬一体软件为主、通用计算机资源少,... 分层(5层):硬件层 → 抽象层 → 操作系统层 → 中间件层 →…...

实测运行容器化Tomcat服务器
文章目录 前言一、拉取Tomcat 9.0镜像二、运行容器化Tomcat服务器三、访问Tomcat官网首页测试 总结 前言 运行容器化Tomcat服务器,首先确保正确安装docker,并且已启动运行,具体安装docker方法见笔者前面的博文《OpenEuler 下 Docker 安装、配…...

致敬苹果的国产手机,只会失去更多市场,iPhone一骑绝尘!
近期诸多国产手机品牌纷纷发布旗舰手机,随着这些旗舰手机的发布,可以看出他们在进一步致敬苹果--实质就是模仿苹果的设计,如此做的结果恐怕是得不偿失,将导致国产手机损失更多市场。 致敬苹果最为直接的当属手机外壳了,…...

《MYSQL45讲》kill不掉的线程
kill query 线程id :终止这个线程正在执行的语句 kill connection 线程id :关闭这个线程的连接,也会先停止这个线程正在执行的语句。这个connection可以缺省。 本文讨论的情况是:使用了kill命令,却没有断开连接,show processli…...

单体架构 IM 系统之 Server 节点状态化分析
基于 http 短轮询模式的单体架构的 IM 系统见下图,即客户端通过 http 周期性地轮询访问 server 实现消息的即时通讯,也就是我们前面提到的 “信箱模型”。“信箱模型” 虽然实现非常容易,但是消息的实时性不高。 我们在上一篇文章(…...

java xml 文本解析
示例文本 <Message><MessageName>time_request</MessageName><Timestamp>20220217165432906359</Timestamp><Body><EQPID>CMMAB01-DTP01</EQPID></Body> </Message>示例代码 import org.w3c.dom.Document; impo…...

Docker占用空间太大磁盘空间不足清理妙招
docker占用空间太大了,磁盘空间不足,清理3妙招 清除所有已停止的容器(container)、未被任何容器所使用的卷(volume)、未被任何容器所关联的网络(network)、所有悬空镜像(…...

编程之路,从0开始:字符函数和字符串函数
Hello大家好!很高兴我们又见面了! 给生活添点passion,开始今天的编程之路! 目录 1、字符分类函数 2、字符转换函数 3、字符串函数 1、 strcpy 2、 strcat 3、 strcmp 4、strlen(s) 5、strstr(s1, s2) 6、 strtok(s1, s2…...

化工防爆巡检机器人:在挑战中成长,为化工安全保驾护航
随着全球能源需求的不断攀升,化工行业的安全性与高效性愈发受到关注。化工设施规模巨大,而且其中多数存在高风险因素,像是易燃易爆化学物质、高温环境、有毒有害物质以及高压设备等。仅2023年,国内危化品事故就多达652起ÿ…...

音频采样数据格式
音频信号在模拟到数字转换时,会涉及到多个关键参数,如采样率、位深度、通道数等。下面是常见的音频采样数据格式及其相关概念: 1. 采样率 (Sample Rate) 采样率指的是每秒钟对音频信号进行采样的次数,单位为赫兹 (Hz)。常见的值…...

【pytorch】常用强化学习算法实现(持续更新)
持续更新常用的强化学习算法,采用单python文件实现,简单易读 2024.11.09 更新:PPO(GAE); SAC2024.11.12 更新:OptionCritic(PPOC) "PPO" import copy import time import torch import numpy as np import torch.nn as …...

DAY59||并查集理论基础 |寻找存在的路径
并查集理论基础 并查集主要有两个功能: 将两个元素添加到一个集合中。判断两个元素在不在同一个集合 代码模板 int n 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好 vector<int> father vector<int> (n, 0); // C里的一…...

Mybatis执行自定义SQL并使用PageHelper进行分页
Mybatis执行自定义SQL并使用PageHelper进行分页 基于Mybatis,让程序可以执行动态传入的SQL,而不需要在xml或者Select语句中定义。 代码示例 pom.xml 依赖 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId&g…...

OpenCV DNN
OpenCV DNN 和 PyTorch 都是常用的深度学习框架,但它们的定位、使用场景和功能有所不同。让我们来对比一下这两个工具: 1. 框架和功能 OpenCV DNN:OpenCV DNN 模块主要用于加载和运行已经训练好的深度学习模型,支持多种深度学习…...

什么时候需要复写hashcode()和compartTo方法
在Java编程中,复写(重写)hashCode()和compareTo()方法的需求通常与对象的比较逻辑和哈希集合的使用紧密相关。但请注意,您提到的compartTo可能是一个拼写错误,正确的方法名是compareTo()。以下是关于何时需要复写这两个…...

PostgreSQL 日志文件备份
随着信息安全的建设,在三级等保要求中,要求日志至少保留半年 180 天以上。那么 PostgreSQL 如何实现这一要求呢。 我们需要配置一个定时任务,定时的将数据库日志 log 下的文件按照生成的规则将超过一定时间的日志拷贝到其它的路径下…...

2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序
2023年第十三届MathorCup高校数学建模挑战赛 B题 城市轨道交通列车时刻表优化问题 原题再现: 列车时刻表优化问题是轨道交通领域行车组织方式的经典问题之一。列车时刻表规定了列车在每个车站的到达和出发(或通过)时刻,其在实际…...

数字农业产业链整体建设方案
1. 引言 数字农业产业链整体建设方案旨在通过数字化手段提升农业产业效率与质量,推动农业现代化进程。方案聚焦于资源数字化、产业数字化、全局可视化与决策智能化的实现,构建农业产业互联网平台,促进农业全流程、全产业链线上一体化发展。 …...

awk那些事儿:在awk中使用shell变量的两种方式
awk是Linux中一款非常好用的程序,可以逐行处理文件,并提供了强大的语法和函数,和grep、sed一起被称为“Linux三剑客”。 在使用awk处理文件时,有时会用到shell中定义的变量,由于在shell中变量的调用方式是通过$符号进…...

大数据面试题--kafka夺命连环问(后10问)
目录 16、kafka是如何做到高效读写? 17、Kafka集群中数据的存储是按照什么方式存储的? 18、kafka中是如何快速定位到一个offset的。 19、简述kafka中的数据清理策略。 20、消费者组和分区数之间的关系是怎样的? 21、kafka如何知道哪个消…...

智能量化交易的多样化策略与风险控制:中阳模型的应用与发展
随着金融市场的不断创新与发展,智能量化交易正逐渐成为金融投资的重要手段。中阳智能量化交易模型通过技术优势、策略优化与实时风险控制等多方面结合,为投资者提供了强有力的工具支持。本文将对中阳量化模型的技术细节、多策略组合与市场适应性进行深入…...

小皮PHP连接数据库提示could not find driver
最近遇到一个奇怪的问题,我的小皮上安装的8.0.2版本的php连接数据库正常。下载使用8.2.9时,没有php.ini,把php-development.ini改成 php.ini后,就提示could not find driver。 网上查了说把php.ini里的这几个配置打开,我也打开了&…...

2024.11.13(一维数组相关)
思维导图 1> 提示并输入一个字符串,统计该字符串中大写字母、小写字母、数字字符、空格字符的个数并输出 2> 提示并输入一个字符串,将该字符串中的所有字母挑选到一个新数组中,将所有的数字字符挑选到另一个新数组中。并且将数字字符对…...

豆包MarsCode算法题:数组元素之和最小化
数组元素之和最小化 问题描述思路分析分析思路解决方案 参考代码(Python)代码分析1. solution 函数2. 计算 1 2 3 ... n 的和3. 乘以 k 得到最终的数组元素之和4. 主程序(if __name__ __main__:)代码的时间复杂度分析&#x…...

Hbase Shell
一、启动运行HBase 首先登陆SSH,由于之前在Hadoop的安装和使用中已经设置了无密码登录,因此这里不需要密码。然后,切换至/usr/local/hadoop,启动Hadoop,让HDFS进入运行状态,从而可以为HBase存储数据&#…...
激活函数解析:神经网络背后的“驱动力”
神经网络中的激活函数(Activation Function)是其运作的核心组件之一,它们决定了神经元如何根据输入信号进行“激活”,进而影响整个模型的表现。理解激活函数的工作原理对于设计和优化神经网络至关重要。本篇博客将深入浅出地介绍各…...

【开源免费】基于SpringBoot+Vue.JS水果购物网站(JAVA毕业设计)
博主说明:本文项目编号 T 065 ,文末自助获取源码 \color{red}{T065,文末自助获取源码} T065,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...

推荐一款多物理场模拟仿真软件:STAR-CCM+
Siemens STAR-CCM是一款功能强大的计算流体力学(CFD)软件,由西门子公司推出。它集成了现代软件工程技术、先进的连续介质力学数值技术和卓越的设计,为工程师提供了一个全面的多物理场仿真平台。主要特点与优势:多物理场仿真、自动化与高效、高…...