当前位置: 首页 > news >正文

【Qt】Qt在窗口中加载Web界面的方法汇总

1、Qt WebEngine

1)Qt版本:Qt5.4以上;

2)平台要求(https://doc.qt.io/archives/qt-5.9/qtwebengine-platform-notes.html):
例如:Windows下只能使用 MSVC 编译器,不支持MinGW编译器,会报错(: error: Unknown module(s) in QT: webenginewidgets)
并且不能用在Qt编译的安卓程序中

3)在pro中添加支持包:

对于QWidget(C++)程序,使用:QT += webenginewidgets
对于QQuick(QML)程序,使用:QT += webengine

4)C++示例
添加头文件

#include <QWebEngineView>

声明Web窗口部件

QWebEngineView *m_webView;

加载url

m_webView->lo

相关文章:

【Qt】Qt在窗口中加载Web界面的方法汇总

1、Qt WebEngine 1)Qt版本:Qt5.4以上; 2)平台要求(https://doc.qt.io/archives/qt-5.9/qtwebengine-platform-notes.html): 例如:Windows下只能使用 MSVC 编译器,不支持MinGW编译器,会报错(: error: Unknown module(s) in QT: webenginewidgets) 并且不能用在Qt编…...

Java集合框架之Collection集合遍历

引言 在Java编程中&#xff0c;集合&#xff08;Collection&#xff09;框架是处理对象集合的核心工具。它提供了一套统一的接口和类来存储和操作对象集合。遍历集合是日常开发中的一项基本任务&#xff0c;本文将深入探讨Java Collection集合的遍历方法&#xff0c;并提供实际…...

基于STM32的智能充电桩:集成RTOS、MQTT与SQLite的先进管理系统设计思路

一、项目概述 随着电动车的普及&#xff0c;充电桩作为关键基础设施&#xff0c;其智能化、网络化管理显得尤为重要。本项目旨在基于STM32微控制器开发一款智能充电桩&#xff0c;能够实现高效的充电监控与管理。项目通过物联网技术&#xff0c;提供实时数据监测、远程管理、用…...

windows 查看yolo11 是否安装了cuda

一、通过python查看 import torch print(torch.cuda.is_available()) 二、通过 pip list 查看 在conda环境 可以看出torch 后面是2.1.4 cu124 说明GPU环境安装成功。 如果是cpu环境&#xff0c;则是&#xff1a;...

机器学习【激活函数】

笔记内容侵权联系删 激活函数的概念神经网络中的每个神经元节点接受上一层神经元的输出值作为本神经元的输入值&#xff0c;并将输入值传递给下一层&#xff0c;输入层神经元节点会将输入属性值直接传递给下一层(隐层或输出层)。在多层神经网络中&#xff0c;上层节点的输入在加…...

【OpenEuler】配置虚拟ip

OpenEuler系统手动配置虚ip 介绍操作方法临时生效永久生效 验证 介绍 我们知道通过keepalived服务可以为linux服务器设置虚拟ip&#xff0c;但是有些特殊场景下若无法安装部署keepalived服务&#xff0c;则需要通过手动设置的方式&#xff0c;配置服务器的虚拟ip。 本方案提供…...

数据分析师证书怎么考

在信息技术飞速发展的今天&#xff0c;数据分析已成为推动各行业进步的核心引擎。CDA&#xff08;Certified Data Analyst&#xff09;数据分析师证书以其权威性和实用性&#xff0c;成为许多数据分析从业者的职业加速器。本文将深入探讨如何考取CDA数据分析师证书&#xff0c;…...

【人工智能】text2vec-large-chinese模型搭建本地知识库

本demo使用 text2vec-large-chinese 模型进行文本处理&#xff0c;然后再过 bge-reranker-v2-m3进行增强 1. 对文本进行向量处理&#xff0c;并保存只至本地 from sentence_transformers import SentenceTransformer import torch import numpy as np import faiss import os …...

前端入门一之ES6--递归、浅拷贝与深拷贝、正则表达式、es6、解构赋值、箭头函数、剩余参数、String、Set

前言 JS是前端三件套之一&#xff0c;也是核心&#xff0c;本人将会更新JS基础、JS对象、DOM、BOM、ES6等知识点&#xff0c;这篇是ES6;这篇文章是本人大一学习前端的笔记&#xff1b;欢迎点赞 收藏 关注&#xff0c;本人将会持续更新。 文章目录 10、递归10.1、阶层案例10.…...

DevOps工程技术价值流:加速业务价值流的落地实践与深度赋能

DevOps的兴起&#xff0c;得益于敏捷软件开发的普及与IT基础设施代码化管理的革新。敏捷宣言虽已解决了研发流程中的诸多挑战&#xff0c;但代码开发仅是漫长价值链的一环&#xff0c;开发前后的诸多问题仍亟待解决。与此同时&#xff0c;虚拟化和云计算技术的飞跃&#xff0c;…...

IP数据云 识别和分析tor、proxy等各类型代理

在网络上使用代理&#xff08;tor、proxy、relay等&#xff09;进行访问的目的是为了规避网络的限制、隐藏真实身份或进行其他的不正当行为。 对代理进行识别和分析可以防止恶意攻击、监控和防御僵尸网络和提高防火墙效率等&#xff0c;同时也可以对用户行为进行分析&#xff…...

vue2 自动化部署 shell 脚本

需求场景&#xff1a;在云平台中进行开发时&#xff0c;由于无法连接外网&#xff0c;在部署前端项目时&#xff0c;是通过本地打包再上传到服务器的方式进行部署的。基于这种部署场景&#xff0c;通过 shell 脚本进行部署流程优化&#xff0c;具体如下&#xff1a; 1、服务器…...

服务器数据恢复——Ext4文件系统使用fsck后mount不上的数据恢复案例

关于Ext4文件系统的几个概念&#xff1a; 块组&#xff1a;Ext4文件系统的全部空间被划分为若干个块组&#xff0c;每个块组结构基本上相同。 块组描述符表&#xff1a;每个块组都对应一个块组描述符&#xff0c;这些块组描述符统一放在文件系统的前部&#xff0c;称为块组描述…...

CTF攻防世界小白刷题自学笔记14

fileclude&#xff0c;难度&#xff1a;1&#xff0c;方向&#xff1a;Web 题目来源:CTF 题目描述:好多file呀&#xff01; 给一下题目链接&#xff1a;攻防世界Web方向新手模式第17题。 打开一看&#xff0c;这熟悉的味道&#xff0c;跟上一篇文章基本一摸一样的&#xff…...

家政服务小程序,家政行业数字化发展下的优势

今年以来&#xff0c;家政市场需求持续增长&#xff0c;市场规模达到了万亿级别&#xff0c;家政服务行业成为了热门行业之一&#xff01; 家政服务种类目前逐渐呈现了多样化&#xff0c;月嫂、保姆、做饭保洁、收纳、维修等家政种类不断出现&#xff0c;满足了居民日益增长的…...

Springboot如何打包部署服务器

文章目的&#xff1a;java项目打包成jar包或war包&#xff0c; 放在服务器上去运行 一、编写打包配置 1. pom.xml 在项目中的pom.xml文件里面修改<build>...</build>的代码 >> 简单打包成Jar形式&#xff0c;参考示例&#xff1a; <build><fina…...

ubuntu将firewall-config导出为.deb文件

firewall-config ubuntu是canonial 公司维护的&#xff0c;用wireshark测过&#xff0c;开机会给他们公司发遥测&#xff08;开了ufw阻塞所有连接也一样&#xff0c;canonial在里面把代码改了&#xff09;firewall-config是fedora(爱好者维护&#xff0c;公益版本)自带的防火墙…...

C++算法练习-day40——617.合并二叉树

题目来源&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目思路分析 题目&#xff1a;给定两棵二叉树 root1 和 root2&#xff0c;请合并这两棵树&#xff0c;即将 root2 中的每个节点合并到 root1 中&#xff0c;合并的规则是如果两个节点在同一位置&#xff08;即…...

2024数维杯国际赛C题【脉冲星定时噪声推断和大气时间信号的时间延迟推断的建模】思路详解

脉冲星是快速旋转的中子星&#xff0c;具有连续和稳定的旋转&#xff0c;因此被称为“宇宙的灯塔”。对脉冲星的空间观测在深空航天器导航和时间标准的维护中起着关键作用。 将脉冲星时间应用于原子时间的保持&#xff0c;预期可以提高本地原子钟的稳定性和可靠性&#xff0c;代…...

【Linux】MTD 分区

我在文章 计算机储存与分区 中讲了关于 GUID 分区和 MBR 分区&#xff0c;他们在 PC 上很常见&#xff0c;但是在嵌入式系统上&#xff0c;Linux 会使用 MTD 分区&#xff0c;至于什么是 MTD 分区&#xff0c;请看&#xff1a; NAND/MTD/UBI/UBIFS概念及使用方法 General MTD…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

WinUI3开发_使用mica效果

简介 Mica(云母)是Windows10/11上的一种现代化效果&#xff0c;是Windows10/11上所使用的Fluent Design(设计语言)里的一个效果&#xff0c;Windows10/11上所使用的Fluent Design皆旨在于打造一个人类、通用和真正感觉与 Windows 一样的设计。 WinUI3就是Windows10/11上的一个…...

EC2安装WebRTC sdk-c环境、构建、编译

1、登录新的ec2实例&#xff0c;证书可以跟之前的实例用一个&#xff1a; ssh -v -i ~/Documents/cert/qa.pem ec2-user70.xxx.165.xxx 2、按照sdk-c demo中readme的描述开始安装环境&#xff1a; https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-c 2…...

AIGC 基础篇 Python基础 02

1.bool类型 书接上回&#xff0c;我们上次最后讲了三大数据类型&#xff0c;除了这三个之外&#xff0c;Python也有bool类型&#xff0c;也就是True和False。 a 2 print(a1) print(a2) 像这里&#xff0c;输出的内容第一个是False&#xff0c;因为a的值为2&#xff0c;而第…...

大数据学习(129)-Hive数据分析

&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一…...

leetcode238-除自身以外数组的乘积

leetcode 238 思路 可以在不使用除法的情况下&#xff0c;利用前缀积和后缀积来实现解答 前缀积&#xff1a;对每个位置&#xff0c;计算当前数字左侧的所有数字的乘积后缀积&#xff1a;对每个位置&#xff0c;计算当前数字右侧的所有数字的乘积 结合这两种思想&#xff0…...