神经网络中常见的激活函数Sigmoid、Tanh和ReLU
激活函数在神经网络中起着至关重要的作用,它们决定了神经元的输出是否应该被激活以及如何非线性地转换输入信号。不同的激活函数适用于不同的场景,选择合适的激活函数可以显著影响模型的性能和训练效率。以下是三种常见的激活函数:Sigmoid、Tanh 和 ReLU 的详细介绍。
1. Sigmoid 激活函数
公式:

图像:

特点:
- 输出范围:(0, 1),将输入压缩到0到1之间。
- 用途:常用于二分类问题中的输出层,因为它的输出可以解释为概率值(0表示负类,1表示正类)。
- 优点:
- 输出具有良好的可解释性,适合用于需要概率输出的任务。
- 缺点:
- 梯度消失问题:当输入较大或较小时,Sigmoid 函数的导数接近于0,导致反向传播时梯度几乎为零,使得权重更新非常缓慢,甚至停止更新。这在深度网络中尤为严重。
- 非零中心化:Sigmoid 函数的输出不是以0为中心的,这会导致后续层的权重更新方向不一致,影响训练效率。
应用场景:
- 二分类问题的输出层。
- 逻辑回归模型。
2. Tanh (双曲正切) 激活函数
公式:

图像:

特点:
- 输出范围:(-1, 1),将输入压缩到-1到1之间。
- 用途:常用于隐藏层,尤其是在早期的神经网络中。它比 Sigmoid 更加对称,且输出是以0为中心的。
- 优点:
- 零中心化:Tanh 的输出是零中心化的,这有助于加速收敛,因为后续层的权重更新方向更加一致。
- 更好的梯度传播:相比 Sigmoid,Tanh 在输入接近0时的导数更大,因此梯度消失问题稍微缓解。
- 缺点:
- 仍然存在梯度消失问题:虽然比 Sigmoid 稍好,但在输入较大或较小时,Tanh 的导数也会接近0,导致梯度消失。
应用场景:
- 隐藏层,尤其是浅层神经网络。
- RNN(循环神经网络)中,Tanh 是常用的激活函数,因为它可以帮助控制信息的流动。
3. ReLU (Rectified Linear Unit) 激活函数
公式:

图像:

特点:
- 输出范围:[0, +∞),当输入为正时,输出等于输入;当输入为负时,输出为0。
- 用途:广泛应用于现代深度学习模型的隐藏层,尤其是在卷积神经网络(CNN)和全连接网络中。
- 优点:
- 避免梯度消失问题:对于正输入,ReLU 的导数为1,因此不会出现梯度消失问题。这使得 ReLU 在深层网络中表现良好,能够加速训练。
- 计算简单:ReLU 的计算非常简单,只需判断输入是否大于0,因此计算效率高。
- 稀疏性:ReLU 会将负输入直接设为0,这有助于引入稀疏性,减少模型的复杂度。
- 缺点:
- 死亡 ReLU 问题:当输入为负时,ReLU 的导数为0,导致该神经元在反向传播时不再更新权重。如果大量神经元进入“死亡”状态,模型可能会失去表达能力。为了解决这个问题,通常使用改进版的 ReLU,如 Leaky ReLU 或 Parametric ReLU。
- 非零中心化:ReLU 的输出是非零中心化的,这可能会导致后续层的权重更新方向不一致。
改进版本:
- Leaky ReLU:为了解决死亡 ReLU 问题,Leaky ReLU 在负输入时赋予一个很小的斜率(通常是0.01),而不是直接设为0。
[
\text{Leaky ReLU}(x) = \max(\alpha x, x), \quad \text{其中} ; 0 < \alpha \ll 1
] - Parametric ReLU (PReLU):Leaky ReLU 的斜率是固定的,而 PReLU 的斜率是一个可学习的参数,可以在训练过程中自动调整。
[
\text{PReLU}(x) = \max(\alpha_i x, x), \quad \text{其中} ; \alpha_i ; \text{是每个神经元的可学习参数}
] - Exponential Linear Unit (ELU):ELU 在负输入时使用指数函数来平滑过渡,避免了死亡 ReLU 问题,并且输出是零中心化的。
[
\text{ELU}(x) =
\begin{cases}
x & \text{if} ; x > 0 \
\alpha (e^x - 1) & \text{if} ; x \leq 0
\end{cases}
]
应用场景:
- 隐藏层,尤其是深度神经网络(DNN)、卷积神经网络(CNN)和生成对抗网络(GAN)。
- 由于其出色的性能和计算效率,ReLU 及其变体已成为现代深度学习模型中最常用的激活函数之一。
总结
| 激活函数 | 输出范围 | 优点 | 缺点 | 应用场景 |
|---|---|---|---|---|
| Sigmoid | (0, 1) | 输出具有概率意义 | 梯度消失,非零中心化 | 二分类问题的输出层,逻辑回归 |
| Tanh | (-1, 1) | 零中心化,更好的梯度传播 | 梯度消失 | 隐藏层,RNN 中 |
| ReLU | [0, +∞) | 避免梯度消失,计算简单,引入稀疏性 | 死亡 ReLU 问题,非零中心化 | 隐藏层,DNN、CNN、GAN |
选择激活函数的建议:
- Sigmoid:主要用于二分类问题的输出层,尤其是在需要概率输出的情况下。
- Tanh:适用于隐藏层,尤其是浅层网络或 RNN 中。它比 Sigmoid 更加对称,有助于加速收敛。
- ReLU:是现代深度学习模型中最常用的激活函数,尤其适用于隐藏层。如果你遇到死亡 ReLU 问题,可以尝试使用 Leaky ReLU 或 PReLU。
相关文章:
神经网络中常见的激活函数Sigmoid、Tanh和ReLU
激活函数在神经网络中起着至关重要的作用,它们决定了神经元的输出是否应该被激活以及如何非线性地转换输入信号。不同的激活函数适用于不同的场景,选择合适的激活函数可以显著影响模型的性能和训练效率。以下是三种常见的激活函数:Sigmoid、T…...
适用于学校、医院等低压用电场所的智能安全配电装置
引言 电力,作为一种清洁且高效的能源,极大地促进了现代生活的便捷与舒适。然而,与此同时,因使用不当或维护缺失等问题,漏电、触电事件以及电气火灾频发,对人们的生命安全和财产安全构成了严重威胁…...
基于python爬虫的智慧人才数据分析系统
废话不多说,先看效果图 更多效果图可私信我获取 源码分享 import os import sysdef main():"""Run administrative tasks."""os.environ.setdefault(DJANGO_SETTINGS_MODULE, 智慧人才数据分析系统.settings)try:from django.core.m…...
LeetCode-315. Count of Smaller Numbers After Self
目录 题目描述 解题思路 【C】 【Java】 复杂度分析 LeetCode-315. Count of Smaller Numbers After Selfhttps://leetcode.com/problems/count-of-smaller-numbers-after-self/description/ 题目描述 Given an integer array nums, return an integer array counts whe…...
根据导数的定义计算导函数
根据导数的定义计算导函数 1. Finding derivatives using the definition (使用定义求导)1.1. **We want to differentiate f ( x ) 1 / x f(x) 1/x f(x)1/x with respect to x x x**</font>1.2. **We want to differentiate f ( x ) x f(x) \sqrt{x} f(x)x wi…...
WPF关于打开新窗口获取数据的回调方法的两种方式
一种基于消息发送模式 一种基于回调机制 基于消息发送模式 父页面定义接收的_selectedPnNumberStandarMsg保证是唯一 Messenger.Default.Register<PlateReplaceApplyModel>(this, _selectedPnNumberStandarMsgToken, platePnNumberModel > { …...
复杂网络(四)
一、规则网络 孤立节点网络全局耦合网络(又称完全网络)星型网络一维环二维晶格 编程实践: import networkx as nx import matplotlib.pyplot as pltn 10 #创建孤立节点图 G1 nx.Graph() G1.add_nodes_from(list(range(n))) plt.figure(f…...
用MATLAB符号工具建立机器人的动力学模型
目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型,表示为二阶微分方程组。本文以一个二杆系统为例,介绍如何用MATLAB符号工具得到微分方程表达式,只需要…...
SQL优化与性能——数据库设计优化
数据库设计优化是提高数据库性能、确保数据一致性和支持业务增长的关键环节。无论是大型企业应用还是小型项目,合理的数据库设计都能够显著提升系统性能、减少冗余数据、优化查询响应时间,并降低维护成本。本章将深入探讨数据库设计中的几个关键技术要点…...
FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现
FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现 原因ADS111x连续采样实现连续采样功能说明iic读取adc的数据速率 VS adc连续采样的速率adc连续采样的速率iic读取adc的数据速率结论分析 FPGA读取adc数据问题一:读取adc数…...
我们来学mysql -- 事务之概念(原理篇)
事务的概念 题记一个例子一致性隔离性原子性持久性 题记 在漫长的编程岁月中,存在一如既往地贯穿着工作,面试的概念这类知识点,事不关己当然高高挂起,精准踩坑时那心情也的却是日了🐶请原谅我的粗俗,遇到B…...
基于特征子空间的高维异常检测:一种高效且可解释的方法
本文将重点探讨一种替代传统单一检测器的方法:不是采用单一检测器分析数据集的所有特征,而是构建多个专注于特征子集(即子空间)的检测器系统。 在表格数据的异常检测实践中,我们的目标是识别数据中最为异常的记录,这种异常性可以…...
看不见的彼方:交换空间——小菜一碟
有个蓝色的链接,先去看看两年前的题目的write up (https://github.com/USTC-Hackergame/hackergame2022-writeups/blob/master/official/%E7%9C%8B%E4%B8%8D%E8%A7%81%E7%9A%84%E5%BD%BC%E6%96%B9/README.md) 从别人的write up中了解到&…...
YOLO模型训练后的best.pt和last.pt区别
在选择YOLO模型训练后的权重文件best.pt和last.pt时,主要取决于具体的应用场景:12 best.pt:这个文件保存的是在训练过程中表现最好的模型权重。通常用于推理和部署阶段,因为它包含了在验证集上表现最好的模型权重&#x…...
Pareidoscope - 语言结构关联工具
文章目录 关于 Pareidoscope安装使用方法输入格式语料库查询 将语料库转换为 SQLite3 数据库两种语言结构之间的关联简单词素分析关联共现和伴随词素分析相关的更大结构可视化关联结构 关于 Pareidoscope Pareidoscope 是一组 用于确定任意语言结构之间 关联的工具,…...
GPT(Generative Pre-trained Transformer) 和 Transformer的比较
GPT(Generative Pre-trained Transformer) 和 Transformer 的比较 flyfish 1. Transformer 是一种模型架构 Transformer 是一种通用的神经网络架构,由 Vaswani 等人在论文 “Attention Is All You Need”(2017)中提…...
软件无线电(SDR)的架构及相关术语
今天简要介绍实现无线电系统调制和解调的主要方法,这在软件定义无线电(SDR)的背景下很重要。 外差和超外差 无线电发射机有两种主要架构——一种是从基带频率直接调制到射频频率(称为外差),而第二种超外差是通过两个调制阶段来实…...
Python将Excel文件转换为JSON文件
工作过程中,需要从 Excel 文件中读取数据,然后交给 Python 程序处理数据,中间需要把 Excel 文件读取出来转为 json 格式,再进行下一步数据处理。 这里我们使用pandas库,这是一个强大的数据分析工具,能够方便地读取和处理各种数据格式。需要注意的是还需要引入openpyxl库,…...
排序算法之选择排序篇
思想: 每次从未排序的部分找出最小的元素,将其放到已排序部分的末尾 从数据结构中找到最小值,放到第一位,放到最前面,之后再从剩下的元素中找出第二小的值放到第二位,以此类推。 实现思路: 遍…...
sizeof和strlen区分,(好多例子)
sizeof算字节大小 带\0 strlen算字符串长度 \0之前...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
