django 实战(python 3.x/django 3/sqlite)
要在 Python 3.x 环境中使用 Django 3.2 和 SQLite 创建一个新的 Django 项目,你可以按照以下步骤进行操作。这些步骤假设你已经安装了 Python 3.x 和 pip。
1. 设置虚拟环境
首先,建议为你的 Django 项目创建一个虚拟环境,以便隔离项目的依赖关系。
# 创建虚拟环境
python3 -m venv myenv# 激活虚拟环境
source myenv/bin/activate # 在 macOS/Linux 上
# myenv\Scripts\activate # 在 Windows 上
2. 安装 Django
在激活的虚拟环境中,使用 pip 安装 Django 3.2。
pip install django==3.2
3. 创建 Django 项目
使用 Django 的管理命令创建一个新的项目。
django-admin startproject myproject
这将创建一个名为 myproject 的目录,其中包含 Django 项目的基本结构。
4. 配置 SQLite 数据库
Django 默认使用 SQLite 作为数据库,因此无需额外配置。你可以在 myproject/settings.py 中查看数据库设置:
# myproject/settings.pyDATABASES = {'default': {'ENGINE': 'django.db.backends.sqlite3','NAME': BASE_DIR / "db.sqlite3",}
}
5. 迁移数据库
在项目目录中运行迁移命令以创建数据库结构:
cd myproject
python manage.py migrate
6. 运行开发服务器
启动 Django 开发服务器以验证项目是否正确配置:
python manage.py runserver
访问 http://127.0.0.1:8000/,你应该会看到 Django 的欢迎页面,表示项目已经成功创建并正在运行。
7. 创建 Django 应用(可选)
如果你需要创建一个新的应用,可以使用以下命令:
python manage.py startapp myapp
这将在你的项目目录中创建一个名为 myapp 的目录,其中包含应用的基本结构。
总结
以上步骤帮助你使用 Python 3.x 和 Django 3.2 创建了一个新的 Django 项目,并且默认使用 SQLite 作为数据库。你可以根据项目需要进一步配置和开发。
相关文章:
django 实战(python 3.x/django 3/sqlite)
要在 Python 3.x 环境中使用 Django 3.2 和 SQLite 创建一个新的 Django 项目,你可以按照以下步骤进行操作。这些步骤假设你已经安装了 Python 3.x 和 pip。 1. 设置虚拟环境 首先,建议为你的 Django 项目创建一个虚拟环境,以便隔离项目的依…...
图数据库 | 12、图数据库架构设计——高性能计算架构
在传统类型的数据库架构设计中,通常不会单独介绍计算架构,一切都围绕存储引擎展开,毕竟存储架构是基础,尤其是在传统的基于磁盘存储的数据库架构设计中。 类似地,在图数据库架构设计中,项目就围绕存储的方…...
Unity 利用Button 组件辅助Scroll View 滚动
实现 创建枚举类ScrollDir 以区分滚动方向。每组两个按钮负责同方向上左右/上下滚动。 Update 中实时获取Scroll View 滚动条当前位置。 if (dir.Equals(ScrollDir.vertical)) {posCurrent scroll.verticalNormalizedPosition; } else if (dir.Equals(ScrollDir.horizontal)…...
Ubuntu 安装Ansible ansible.cfg配置文件生成
安装后的ansible.cfg后的默认内容如下: rootlocalhost:/etc/ansible# cat ansible.cfg # Since Ansible 2.12 (core): # To generate an example config file (a "disabled" one with all default settings, commented out): # $ ansible-…...
使用PaddlePaddle实现线性回归模型
目录 编辑 引言 PaddlePaddle简介 线性回归模型的构建 1. 准备数据 2. 定义模型 3. 准备数据加载器 4. 定义损失函数和优化器 5. 训练模型 6. 评估模型 7. 预测 结论 引言 线性回归是统计学和机器学习中一个经典的算法,用于预测一个因变量࿰…...
MongoDB集群的介绍与搭建
MongoDB集群的介绍与搭建 一.MongoDB集群的介绍 注意:Mongodb是一个比较流行的NoSQL数据库,它的存储方式是文档式存储,并不是Key-Value形式; 1.1集群的优势和特性 MongoDB集群的优势主要体现在以下几个方面: (1)高…...
PhpStorm配置Laravel
本文是2024最新的通过phpstorm创建laravel项目 1.下载phpstorm 2.检查本电脑的环境phpcomposer 显示图标就是安装成功了,不会安装的百度自行安装 3.安装完后,自行创建一个空目录不要有中文,然后运行cmd 输入以下命令,即可创建…...
Solving the Makefile Missing Separator Stop Error in VSCode
1. 打开 Makefile 并转换缩进 步骤 1: 在 VSCode 中打开 Makefile 打开 VSCode。使用文件浏览器或 Ctrl O(在 Mac 上是 Cmd O)打开你的 Makefile。 步骤 2: 打开命令面板 按 Ctrl Shift P(在 Mac 上是 Cmd Shift P)&…...
MySQL大小写敏感、MySQL设置字段大小写敏感
文章目录 一、MySQL大小写敏感规则二、设置数据库及表名大小写敏感 2.1、查询库名及表名是否大小写敏感2.2、修改库名及表名大小写敏感 三、MySQL列名大小写不敏感四、lower_case_table_name与校对规则 4.1、验证校对规则影响大小写敏感4.1、验证校对规则影响排序 五、设置字段…...
项目搭建:guice,jdbc,maven
当然,以下是一个使用Guice、JDBC和Maven实现接口项目的具体例子。这个项目将展示如何创建一个简单的用户管理应用,包括用户信息的增删改查(CRUD)操作。 ### 1. Maven pom.xml 文件 首先确保你的pom.xml文件包含必要的依赖&#…...
第四届新生程序设计竞赛正式赛(C语言)
A: HNUCM的学习达人 SQ同学是HNUCM的学习达人,据说他每七天就能够看完一本书,每天看七分之一本书,而且他喜欢看完一本书之后再看另外一本。 现在请你编写一个程序,统计在指定天数中,SQ同学看完了多少本完整的书&#x…...
【分布式知识】Redis6.x新特性了解
文章目录 Redis6.x新特性1. 多线程I/O处理2. 改进的过期算法3. SSL/TLS支持4. ACL(访问控制列表)5. RESP3协议6. 客户端缓存7. 副本的无盘复制8. 其他改进 Redis配置详解1. 基础配置2. 安全配置3. 持久化配置4. 客户端与连接5. 性能与资源限制6. 其他配置…...
程序员需要具备哪些知识?
程序员需要掌握的知识广泛而深厚,这主要取决于具体从事的领域和技术方向。不过,有些核心知识是共通的,就像建房子的地基一样,下面来讲讲这些关键领域: 1. 编程语言: 无论你是搞前端、后端、移动开发还是嵌…...
实验四:MyBatis 的关联映射
目录: 一 、实验目的: 熟练掌握实体之间的各种映射关系。 二 、预习要求: 预习数据库原理中所讲过的一对一、一对多和多对多关系 三、实验内容: 1. 查询所有订单信息,关联查询下单用户信息(注意:因为一…...
【Leetcode】189.轮转数组
题目链接: 189.轮转数组 题目描述: 解题思路: 要想实现数组元素向右轮转k个位置,可是将数组三次反转来实现 以 nums [1,2,3,4,5,6,7], k 3 为例,最终要得到[5,6,7,1,2,3,4]: 第一次反转:将整个数组反转…...
【JavaSE】常见面试问题
1. 什么是 Java 中的多态? 多态是 Java 中面向对象的核心特性之一,指的是同一操作作用于不同类型的对象时表现出不同的行为。通过方法重载和方法重写实现。方法重载是同一方法名,根据参数不同做不同处理,属于编译时多态ÿ…...
【超详图文】多少样本量用 t分布 OR 正态分布
文章目录 相关教程相关文献预备知识Lindeberg-Lvy中心极限定理 t分布的来历实验不同分布不同抽样次数的总体分布不同自由度相同参数的t分布&正态分布 作者:小猪快跑 基础数学&计算数学,从事优化领域7年,主要研究方向:MIP求…...
leetcode hot100【Leetcode 416.分割等和子集】java实现
Leetcode 416.分割等和子集 题目描述 给定一个非负整数的数组 nums ,你需要将该数组分割成两个子集,使得两个子集的元素和相等。如果可以分割,返回 true ,否则返回 false。 示例 1: 输入:nums [1,5,11,…...
《算法导论》英文版前言To the teacher第4段研习录:有答案不让用
【英文版】 Departing from our practice in previous editions of this book, we have made publicly available solutions to some, but by no means all, of the problems and exercises. Our Web site, http://mitpress.mit.edu/algorithms/, links to these solutions. Y…...
Laravel关联模型查询
一,多表关联 文章表articles 和user_id,category_id关联 //with()方法是渴求式加载,缓解了1N的查询问题,仅需11次查询就能解决问题,可以提升查询速度。with部分没有就以null输出,所以可以理解为 多表 left join 查…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
