当前位置: 首页 > news >正文

3大模块助力学生会视频自动评审系统升级

一、项目背景

传统的学生会视频作品或电子申请材料评审由老师线下逐一面审完成。面对大量学生提交的作品,评审效率低、耗时长,且主观性较强。为此,客户希望开发一个基于AI的线上自动面审系统,从语法正确性、演讲流利度和发音准确性三个维度进行评估,实现高效、客观、公正的评审过程。

二、解决方案概述

1. 系统模块划分

系统分为四个核心模块:

(1)视频上传模块

设计用户友好的界面,支持学生会便捷上传视频。

支持多种格式的视频文件上传,提供上传进度显示和完成提醒。

(2)视频存储模块

采用分布式存储系统,确保视频文件的高效存储与管理。

提供数据备份和容灾机制,保障数据安全与可用性。

(3)视频预处理模块

自动进行视频格式转换,支持多种视频编码格式。

调整视频分辨率,确保输入数据符合分析标准。

(4)评分报告反馈模块

系统每日自动生成评分报告,通过邮件或系统通知推送给教师。

支持按维度查看报告内容,并提供详细评分说明。

2. 评审维度分析模块

系统从三个维度对视频进行智能评审,每个维度有不同的技术支持和权重分配:

(1)语法分析(权重30%)

技术实现:采用自然语言处理(NLP)技术,通过句法分析器识别语法错误。

评估内容:分析主谓宾结构、时态使用、句子完整性等。

(2)演讲流利度分析(权重40%)

技术实现:利用语音识别技术,将演讲内容转录为文本。通过分析语速、停顿次数和停顿时长等参数评估流利度。

评估内容:考察演讲的连续性、停顿合理性和语速均衡性。

(3)发音准确性分析(权重30%)

技术实现:使用声学模型,将演讲内容与标准发音进行对比,评估发音偏误。

评估内容:分析元音、辅音发音是否清晰,以及重音和语调是否准确。

3. 评分与反馈模块

(1)综合评分

根据三个维度的权重计算学生的总分。

支持教师按维度查看详细评分。

(2)个性化反馈

自动生成反馈报告,标注语法错误、演讲不流利或发音不准确的具体片段。

提供针对性改进建议,如语法规则说明、流利度提升技巧和标准发音练习资源。

(3)用户操作界面

教师可以通过系统界面或邮件推送多种方式查看评分报告。

系统支持按维度、分数高低和具体错误类型进行筛选排序,同时可查看每个学生的详细信息。

三、项目优势

1. 效率提升:自动化评审显著减少教师的人工审核时间,提高评审效率。

2. 客观性保障:基于AI算法的评分标准统一,避免人为偏差。

3. 精准反馈:系统提供个性化的改进建议,帮助学生针对性提升。

相关文章:

3大模块助力学生会视频自动评审系统升级

一、项目背景 传统的学生会视频作品或电子申请材料评审由老师线下逐一面审完成。面对大量学生提交的作品,评审效率低、耗时长,且主观性较强。为此,客户希望开发一个基于AI的线上自动面审系统,从语法正确性、演讲流利度和发音准确…...

鸿蒙开发——使用ArkTs处理XML文本

1、概 述 XML(可扩展标记语言)是一种用于描述数据的标记语言,旨在提供一种通用的方式来传输和存储数据,特别是Web应用程序中经常使用的数据。XML并不预定义标记。因此,XML更加灵活,并且可以适用于广泛的应…...

【Linux】文件查找 find grep

文章目录 1. 引言简介Linux文件系统的基本概念为什么文件查找命令在日常使用中非常重要 2. find 命令基本用法常见选项和参数高级用法和技巧实际示例 3. locate 命令如何工作与find命令的区别安装和使用locate实际示例 4. grep 结合文件查找使用grep进行内容查找结合find命令使…...

Go学习笔记之运算符号

算数运算符 运算符描述相加-相减*相乘/相除%求余自增–自减 代码示例: package mainimport "fmt"func main() {// 算数运算符a : 1b : 2fmt.Println(a b) // 加 3fmt.Println(a - b) // 减 -1fmt.Println(a * b) // 乘 2fmt.Println(a / b) // 除 0fm…...

npm : 无法加载文件 D:\nodejs\npm.ps1,因为在此系统上禁止运行脚本

要以管理员身份打开PowerShell,请按照以下步骤操作: 在Windows搜索框中查找PowerShell: 在任务栏上,点击左下角的Windows徽标(或按Win S键)以打开搜索框。输入“PowerShell”以查找PowerShell应用程序。右…...

YOLOv8-ultralytics-8.2.103部分代码阅读笔记-torch_utils.py

torch_utils.py ultralytics\utils\torch_utils.py 目录 torch_utils.py 1.所需的库和模块 2.def torch_distributed_zero_first(local_rank: int): 3.def smart_inference_mode(): 4.def autocast(enabled: bool, device: str "cuda"): 5.def get_cpu_i…...

Java中的数据存储结构解析与应用

一、引言 在Java编程中,数据存储结构是程序设计的基础。合理选择和使用数据结构可以提高程序的性能和可维护性。本文将带您了解Java中的各种数据存储结构,并探讨其优缺点及适用场景。 二、基本数据类型 Java提供了8种基本数据类型,分别是b…...

【链表】力扣 141. 环形链表

一、题目 二、思路 龟兔进行赛跑 龟的速度是 1,兔的速度是 2龟兔从同一起点出发,若 龟追上兔 则说明 有环 存在;若追不上,则说明无环。 三、代码 /*** Definition for singly-linked list.* class ListNode {* int val;* …...

Hbase整合Mapreduce案例2 hbase数据下载至hdfs中——wordcount

目录 整合结构准备数据下载pom.xmlMain.javaReduce.javaMap.java操作 总结 整合结构 和案例1的结构差不多,Hbase移动到开头,后面跟随MR程序。 因此对于输入的K1 V1会进行一定的修改 准备 在HBASE中创建表,并写入数据 create "wunaii…...

diff算法

vue的diff算法详解 vue: diff 算法是一种通过同层的树节点进行比较的高效算法 其有两个特点: 比较只会在同层级进行, 不会跨层级比较 在diff比较的过程中,循环从两边向中间比较 diff 算法在很多场景下都有应用,在 vue 中&…...

最新AI问答创作运营系统(SparkAi系统),GPT-4.0/GPT-4o多模态模型+联网搜索提问+问答分析+AI绘画+管理后台系统

目录 一、人工智能 系统介绍文档 二、功能模块介绍 系统快速体验 三、系统功能模块 3.1 AI全模型支持/插件系统 AI大模型 多模态模型文档分析 多模态识图理解能力 联网搜索回复总结 3.2 AI智能体应用 3.2.1 AI智能体/GPTs商店 3.2.2 AI智能体/GPTs工作台 3.2.3 自…...

docker应用

docker version docker info docker images# 查看主机所以镜像 docker search# 搜索镜像 docker pull# 下载镜像 docker rmi# 删除镜像 docker tag 镜像名:版本 新镜像名:版本 # 复制镜像并改名 docker commit # 提交镜像 docker load -i /XXX/XXX.tar # 导入镜像 docker sav…...

COCO数据集理解

COCO(Common Objects in Context)数据集是一个用于计算机视觉研究的广泛使用的数据集,特别是在物体检测、分割和图像标注等任务中。COCO数据集由微软研究院开发,其主要特点包括: 丰富的标签:COCO数据集包含…...

C# 向上取整多种实现方法

1.使用 Math.Ceiling 方法: 在 C# 中,可以利用 System.Math 类下的 Math.Ceiling 方法来实现向上取整。它接受一个 double 或 decimal 类型的参数,并返回大于或等于该参数的最小整数(以 double 或 decimal 类型表示)。…...

Elastic Cloud Serverless:深入探讨大规模自动扩展和性能压力测试

作者:来自 Elastic David Brimley, Jason Bryan, Gareth Ellis 及 Stewart Miles 深入了解 Elasticsearch Cloud Serverless 如何动态扩展以处理海量数据和复杂查询。我们探索其在实际条件下的性能,深入了解其可靠性、效率和可扩展性。 简介 Elastic Cl…...

新一代零样本无训练目标检测

🏡作者主页:点击! 🤖编程探索专栏:点击! ⏰️创作时间:2024年12月2日21点02分 神秘男子影, 秘而不宣藏。 泣意深不见, 男子自持重, 子夜独自沉。 论文链接 点击开启你的论文编程之旅h…...

es 3期 第13节-多条件组合查询实战运用

#### 1.Elasticsearch是数据库,不是普通的Java应用程序,传统数据库需要的硬件资源同样需要,提升性能最有效的就是升级硬件。 #### 2.Elasticsearch是文档型数据库,不是关系型数据库,不具备严格的ACID事务特性&#xff…...

全局token验证

全局token验证 简介 ​通俗地说,JWT的本质就是一个字符串,它是将用户信息保存到一个Json字符串中,然后进行编码后得到一个JWT token,并且这个JWT token带有签名信息,接收后可以校验是否被篡改,所以可以用…...

实时美颜技术详解:美颜SDK与直播APP开发实践

通过集成美颜SDK(软件开发工具包),开发者能够轻松为直播APP提供实时美颜效果,改善用户的直播体验。本篇文章,小编将深入探讨实时美颜技术,重点分析美颜SDK的核心技术及其在直播APP中的应用实践。 一、实时…...

电子应用设计方案-41:智能微波炉系统方案设计

智能微波炉系统方案设计 一、引言 随着科技的不断进步,人们对于厨房电器的智能化需求日益增长。智能微波炉作为现代厨房中的重要设备,应具备更便捷、高效、个性化的功能,以满足用户多样化的烹饪需求。 二、系统概述 1. 系统目标 - 提供精确…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...