当前位置: 首页 > news >正文

μC/OS-Ⅱ源码学习(3)---事件模型

快速回顾

μC/OS-Ⅱ中的多任务

μC/OS-Ⅱ源码学习(1)---多任务系统的实现

μC/OS-Ⅱ源码学习(2)---多任务系统的实现(下)

        本文开始,进入事件源码的学习。

事件模型

        在一个多任务系统里,各个任务在系统的统筹下相继执行,由于执行速度极快,就好像在一段时间内同时执行多个任务的代码一样,在更高级复杂的操作系统里,这叫做并发

        如果各个任务相互独立,没有资源的依赖和耦合,就可以凭借优先级的来决定先后执行的顺序,这是一种简单的多任务系统模型。但对于一块单片机来说,片上的资源(内存以及各种外设)是紧缺的,在完成需求的前提,可用的资源余量通常不多,这还只是平均余量,在复杂的应用场景下可能接近满载,此时各个任务就不能随心所欲的使用资源了,而是要按顺序依次排队等候使用(道理就是,即便空载也要保持这种编写习惯)。

        这种资源不仅是指硬件外设的使用,还体现在内存资源的使用上,一个简单的例子,当我们已经打开了某个文件时,若此时尝试在修改该文件的名称,会弹窗警示我们”该文件已被打开,请先关闭“。这是出于安全考虑,不希望多个进程同时对一个资源进行修改,而要有顺序地获取控制权。

        另一方面,各个任务之间还存在依赖关系,比如一个简单的热水器,包含ADC采样计算和PID逻辑输出两个任务(实际可能一个任务就行,这里仅作说明需要),那么后者一定会依赖前者提供实时数据进行新的运算,否则只能延续之前的输出。

        再比如一些任务,需要外设完成工作后产生中断,从而告知任务的运行(不能在中断内大量处理应用逻辑),这也是一种事件。

        从上面的各种案例场景分析,就知道需要各种各样的事件来协调大家的运行,才能在多任务环境下有条不紊的先后执行,减少应用出错的概率。在μC/OSⅡ中提供了五种不同的事件(EVENT)供用户使用(我归类为广义事件。另有系统定时器类型,但不归为事件):

//ucos_ii.h
#define  OS_EVENT_TYPE_UNUSED           0u
#define  OS_EVENT_TYPE_MBOX             1u   //邮箱
#define  OS_EVENT_TYPE_Q                2u   //队列
#define  OS_EVENT_TYPE_SEM              3u   //信号量
#define  OS_EVENT_TYPE_MUTEX            4u   //互斥信号量
#define  OS_EVENT_TYPE_FLAG             5u   //事件标志组
#define  OS_TMR_TYPE                  100u   //定时器

        事件有专门的事件控制块记录信息,其中邮箱(MBOX)队列(Q)信号量(SEM)互斥信号量(MUTEX)为狭义事件,其事件控制块类型为OS_EVENT,队列还有额外的控制块OS_Q事件标志组(FLAG)则是一类特殊的事件,有自己的控制块类型OS_FLAG_GRP

        它们分别装载在下面的全局变量中:

//ucos_ii.h
#if (OS_EVENT_EN) && (OS_MAX_EVENTS > 0u)
OS_EXT  OS_EVENT     *OSEventFreeList;            /* 空白事件控制块链表 */
OS_EXT  OS_EVENT      OSEventTbl[OS_MAX_EVENTS];  /* 事件控制块数组 */
#endif#if (OS_Q_EN > 0u) && (OS_MAX_QS > 0u)
OS_EXT  OS_Q             *OSQFreeList;              /* 空白队列控制块链表 */
OS_EXT  OS_Q              OSQTbl[OS_MAX_QS];        /* 队列控制块数组 */
#endif#if (OS_FLAG_EN > 0u) && (OS_MAX_FLAGS > 0u)
OS_EXT  OS_FLAG_GRP      OSFlagTbl[OS_MAX_FLAGS];   /* 事件标志组数组 */
OS_EXT  OS_FLAG_GRP     *OSFlagFreeList;            /* 空白的事件标志组链表  */
#endif

        由OS_EVENT_EN的定义也可以对事件进行分类了:

#define   OS_EVENT_EN   (((OS_Q_EN > 0u) && (OS_MAX_QS > 0u)) || (OS_MBOX_EN > 0u) || (OS_SEM_EN > 0u) || (OS_MUTEX_EN > 0u))

事件控制块类型

        从上一节描述可知,μC/OSⅡ共有三种事件控制块,分别是OS_EVENTOS_QOS_FLAG_GRP,其中OS_EVENT是用的最多的,这里先以它为例解读,后续讲到对应事件时再解析其它两种。

//ucos_ii.h
typedef struct os_event {INT8U    OSEventType;      /* 事件类型,有六种(其中一种是UNUSED) */void    *OSEventPtr;       /* OSEventPtr是一个多用途的指针,当作为链表时,可以指向下一个控制块;当作为具体的事件控制块时,指向具体的事件结构,如OS_Q */  INT16U   OSEventCnt;       /* 信号量计数器,其它事件类型不使用该成员 */OS_PRIO  OSEventGrp;       /* 等待信号的任务优先级组 */OS_PRIO  OSEventTbl[OS_EVENT_TBL_SIZE];  /* 等待信号的组内优先级 */#if OS_EVENT_NAME_EN > 0uINT8U   *OSEventName;      //事件名称
#endif
} OS_EVENT;

        其中,成员OSEventGrpOSEventTbl[OS_EVENT_TBL_SIZE]和多任务的就绪优先级逻辑类似,都是为了快速定位到最高优先级的就绪任务,为了之后对比和区分,之前多任务的部分我们称为”优先级就绪表“,在这里我们可以为其取名为”事件等待表“。

事件的初始化

        在执行OSInit()时,会对事件链表进行初始化,与任务控制块不同的是,事件链表为单相链表,具体函数为OS_InitEventList()

//os_core.c
static  void  OS_InitEventList (void)
{
#if (OS_EVENT_EN) && (OS_MAX_EVENTS > 0u)
#if (OS_MAX_EVENTS > 1u)INT16U     ix;INT16U     ix_next;OS_EVENT  *pevent1;OS_EVENT  *pevent2;OS_MemClr((INT8U *)&OSEventTbl[0], sizeof(OSEventTbl));  /* 清空事件控制块数组 */for (ix = 0u; ix < (OS_MAX_EVENTS - 1u); ix++) {    /* 将OSEventTbl数组元素组成链表 */ix_next = ix + 1u;pevent1 = &OSEventTbl[ix];pevent2 = &OSEventTbl[ix_next];pevent1->OSEventType    = OS_EVENT_TYPE_UNUSED;    //初始化事件类型为UNUSEDpevent1->OSEventPtr     = pevent2;
#if OS_EVENT_NAME_EN > 0upevent1->OSEventName    = (INT8U *)(void *)"?";     /* 初始化事件名称"?" */
#endif}pevent1                         = &OSEventTbl[ix];pevent1->OSEventType            = OS_EVENT_TYPE_UNUSED;pevent1->OSEventPtr             = (OS_EVENT *)0;     //链表尾的下一个指针指向0
#if OS_EVENT_NAME_EN > 0upevent1->OSEventName            = (INT8U *)(void *)"?"; /* Unknown name                            */
#endifOSEventFreeList                 = &OSEventTbl[0];   //将空白链表头指向刚创建的链表
#elseOSEventFreeList                 = &OSEventTbl[0];       /* 只定义一个事件时,则链表也只有一个元素 */OSEventFreeList->OSEventType    = OS_EVENT_TYPE_UNUSED;OSEventFreeList->OSEventPtr     = (OS_EVENT *)0;
#if OS_EVENT_NAME_EN > 0uOSEventFreeList->OSEventName    = (INT8U *)"?";        /* 初始化事件名称"?" */
#endif
#endif
#endif
}

         还有事件标志组的初始化函数OS_FlagInit(),其内容和OS_InitEventList()基本一致,只是操作对象变了:

//os_flag.c
void  OS_FlagInit (void)
{
#if OS_MAX_FLAGS == 1u    /* 只设定一个事件标志组,则只需将OSFlagTbl首元素当作链表头 */OSFlagFreeList                 = (OS_FLAG_GRP *)&OSFlagTbl[0];OSFlagFreeList->OSFlagType     = OS_EVENT_TYPE_UNUSED;    //事件类型初始化为UNUSEDOSFlagFreeList->OSFlagWaitList = (void *)0;OSFlagFreeList->OSFlagFlags    = (OS_FLAGS)0;
#if OS_FLAG_NAME_EN > 0uOSFlagFreeList->OSFlagName     = (INT8U *)"?";
#endif
#endif#if OS_MAX_FLAGS >= 2uINT16U        ix;INT16U        ix_next;OS_FLAG_GRP  *pgrp1;OS_FLAG_GRP  *pgrp2;OS_MemClr((INT8U *)&OSFlagTbl[0], sizeof(OSFlagTbl));      /* 清空事件标志组控制块 */for (ix = 0u; ix < (OS_MAX_FLAGS - 1u); ix++) {        /* 初始化控制块并组成链表结构 */ix_next = ix + 1u;pgrp1 = &OSFlagTbl[ix];pgrp2 = &OSFlagTbl[ix_next];pgrp1->OSFlagType     = OS_EVENT_TYPE_UNUSED;    //事件类型初始化为UNUSEDpgrp1->OSFlagWaitList = (void *)pgrp2;
#if OS_FLAG_NAME_EN > 0upgrp1->OSFlagName     = (INT8U *)(void *)"?";     /* 事件标志组名称 */
#endif}pgrp1                 = &OSFlagTbl[ix]; pgrp1->OSFlagType     = OS_EVENT_TYPE_UNUSED;pgrp1->OSFlagWaitList = (void *)0;      //最后一个元素的下一个指针指向0
#if OS_FLAG_NAME_EN > 0upgrp1->OSFlagName     = (INT8U *)(void *)"?";             
#endifOSFlagFreeList        = &OSFlagTbl[0];
#endif

         除此之外,还有队列控制块的初始化OS_QInit()

//os_q.c
void  OS_QInit (void)
{
#if OS_MAX_QS == 1u      /* 只设定一个队列时 */OSQFreeList         = &OSQTbl[0];          OSQFreeList->OSQPtr = (OS_Q *)0;
#endif#if OS_MAX_QS >= 2uINT16U   ix;INT16U   ix_next;OS_Q    *pq1;OS_Q    *pq2;OS_MemClr((INT8U *)&OSQTbl[0], sizeof(OSQTbl));  /* 清空队列控制块 */for (ix = 0u; ix < (OS_MAX_QS - 1u); ix++) {     /* 初始化队列控制块,并组成链表 */ix_next = ix + 1u;pq1 = &OSQTbl[ix];pq2 = &OSQTbl[ix_next];pq1->OSQPtr = pq2;}pq1         = &OSQTbl[ix];pq1->OSQPtr = (OS_Q *)0;OSQFreeList = &OSQTbl[0];
#endif
}

         接下来将具体解析各种事件的生命周期函数源码。

相关文章:

μC/OS-Ⅱ源码学习(3)---事件模型

快速回顾 μC/OS-Ⅱ中的多任务 μC/OS-Ⅱ源码学习(1)---多任务系统的实现 μC/OS-Ⅱ源码学习(2)---多任务系统的实现(下) 本文开始&#xff0c;进入事件源码的学习。 事件模型 在一个多任务系统里&#xff0c;各个任务在系统的统筹下相继执行&#xff0c;由于执行速度极快&a…...

Jmeter进阶篇(30)深入探索 JMeter 监听器

前言 在性能测试领域里,Apache JMeter 是一款经典而强大的工具,而其中的监听器(Listeners)组件更是发挥着不可或缺的关键作用。 监听器就像敏锐的观察者,默默记录测试执行过程中的各种数据,作为系统性能分析的数据依据。 本文将带你全方位走进 JMeter 监听器的奇妙世界,…...

虚幻引擎的工程目录结构

虚幻引擎的工程目录结构如下&#xff1a; .idea/.vs&#xff1a;用于IDE&#xff08;如IntelliJ IDEA或Visual Studio&#xff09;的项目配置文件&#xff0c;包含工程设置和解决方案文件。 Binaries&#xff1a;存放编译后的可执行文件和相关的动态链接库&#xff08;DLL&…...

深度学习中的yield

以下为例&#xff1a; def data_iter(batch_size, features, labels):num_examples len(features)indices list(range(num_examples))# 这些样本是随机读取的&#xff0c;没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices …...

数据库数据恢复—ORACLE常见故障有哪些?如何恢复数据?

Oracle数据库常见故障表现&#xff1a; 1、ORACLE数据库无法启动或无法正常工作。 2、ORACLE ASM存储破坏。 3、ORACLE数据文件丢失。 4、ORACLE数据文件部分损坏。 5、ORACLE DUMP文件损坏。 Oracle数据库数据恢复方案&#xff1a; 1、检测存放数据库的服务器/存储设备是否存…...

使用JavaScrip和HTML搭建一个简单的博客网站系统

搭建一个简单的博客网站系统&#xff0c;我们需要创建几个基本的页面和功能&#xff1a;登录、注册、文章发布等。这里我们先实现一个基础版本&#xff0c;包括用户登录、注册以及文章发布的功能。由于这是一个简化版的示例&#xff0c;我们将所有逻辑集成在一个HTML文件中&…...

算法-字符串-76.最小覆盖子串

一、题目 二、思路解析 1.思路&#xff1a; 滑动窗口&#xff01;&#xff01;&#xff01; 2.常用方法&#xff1a; 无 3.核心逻辑&#xff1a; 1.特殊情况&#xff1a;s或t是否为空字符串 if(snull||tnull)return ""; 2.声明一个字符数组——用于记录对应字符出现…...

Python爬虫之Selenium的应用

【1】Selenium基础介绍 1.什么是selenium&#xff1f; &#xff08;1&#xff09;Selenium是一个用于Web应用程序测试的工具。 &#xff08;2&#xff09;Selenium 测试直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。 &#xff08;3&#xff09;支持通过各种driv…...

粉丝生产力与开源 AI 智能名片 2+1 链动模式商城小程序的融合创新与价值拓展

摘要&#xff1a;本文聚焦于粉丝生产力在当代文化与商业语境中的独特作用&#xff0c;并深入探讨其与开源 AI 智能名片 21 链动模式商城小程序的有机结合。通过剖析粉丝生产力的多元表现形式、内在驱动机制以及开源 AI 智能名片 21 链动模式商城小程序的功能特性与商业潜力&…...

红黑树(Red-Black Tree)

一、概念 红黑树&#xff08;Red Black Tree&#xff09;是一种自平衡的二叉搜索树&#xff0c;通过添加颜色信息来确保在进行插入和删除操作时&#xff0c;树的高度保持在对数级别&#xff0c;从而保证了查找、插入和删除操作的时间复杂度为 O(log n)。这种树可以很好地解决普…...

Cocos 资源加载(以Json为例)

resources 通常我们会把项目中需要动态加载的资源放在 resources 目录下&#xff0c;配合 resources.load 等接口动态加载。你只要传入相对 resources 的路径即可&#xff0c;并且路径的结尾处 不能 包含文件扩展名。 resources.load("Inf", JsonAsset, (error, ass…...

解决 IntelliJ IDEA 启动错误:插件冲突处理

引言 在使用 IntelliJ IDEA 进行开发时&#xff0c;我们可能会遇到各种启动错误。本文将详细介绍一种常见的错误&#xff1a;插件冲突&#xff0c;并提供解决方案。 错误背景 最近&#xff0c;有用户在启动 IntelliJ IDEA 时遇到了一个错误&#xff0c;提示信息为&#xff1a…...

SQL——DQL分组聚合

分组聚合&#xff1a; 格式&#xff1a; select 聚合函数1(聚合的列),聚合函数2(聚合的列) from 表名 group by 标识列; ###若想方便分辨聚合后数据可在聚合函数前加上标识列&#xff08;以标识列进行分组&#xff09; 常见的聚合函数: sum(列名):求和函数 avg(列名)…...

Ripro V5日主题 v8.3 开心授权版 wordpress主题虚拟资源下载站首选主题模板

RiPro主题全新V5版本&#xff0c;是一个优秀且功能强大、易于管理、现代化的WordPress虚拟资源商城主题。支持首页模块化布局和WP原生小工具模块化首页可拖拽设置&#xff0c;让您的网站设计体验更加舒适。同时支持了高级筛选、自带会员生态系统、超全支付接口等众多功能&#…...

分布式搜索引擎之elasticsearch基本使用2

分布式搜索引擎之elasticsearch基本使用2 在分布式搜索引擎之elasticsearch基本使用1中&#xff0c;我们已经导入了大量数据到elasticsearch中&#xff0c;实现了elasticsearch的数据存储功能。但elasticsearch最擅长的还是搜索和数据分析。 所以j接下来&#xff0c;我们研究下…...

java学习-第十五章-IO流(java.io包中)

一、理解 1. 简单而言&#xff1a;流就是内存与存储设备之间传输数据的通道、管道。 2. 分类&#xff1a; (1) 按方向(以JVM虚拟机为参照物)【重点】 输入流&#xff1a;将中的内容读入到中。 输出流&#xff1a;将中的内容写入到中。 (2) 按单位&#xff1a; 字节流&#xf…...

企业如何实现数据从源端到消费端的全链路加工逻辑可视化?

要想实现数据加工链路的可视化&#xff0c;血缘图谱无疑是一个有效的工具。血缘图谱能够清晰地展示数据从产生、流转、加工到最终消费的每一个环节&#xff0c;帮助企业直观地理解数据之间的关联和依赖关系&#xff0c;轻松追溯数据来源和去向&#xff0c;并在数据出现问题时快…...

Toxicity of the Commons: Curating Open-Source Pre-Training Data

基本信息 &#x1f4dd; 原文链接: https://arxiv.org/abs/2410.22587&#x1f465; 作者: Catherine Arnett, Eliot Jones, Ivan P. Yamshchikov, Pierre-Carl Langlais&#x1f3f7;️ 关键词: toxicity filtering, language models, data curation&#x1f4da; 分类: 机器…...

Python 单例模式工厂模式和classmethod装饰器

前言&#xff1a; Python作为面向对象的语言&#xff0c;显然支持基本的设计模式。也具备面向对象的语言的基本封装方法&#xff1a;属性、方法、继承、多态等。但是&#xff0c;做为强大的和逐渐发展的语言&#xff0c;python也有很多高级的变种方法&#xff0c;以适应更多的…...

计算机键盘简史 | 键盘按键功能和指法

注&#xff1a;本篇为 “计算机键盘简史 | 键盘按键功能和指法” 相关文章合辑。 英文部分机翻未校。 The Evolution of Keyboards: From Typewriters to Tech Marvels 键盘的演变&#xff1a;从打字机到技术奇迹 Introduction 介绍 The keyboard has journeyed from a humb…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...