R语言的数据结构-数据框
【图书推荐】《R语言医学数据分析实践》-CSDN博客
《R语言医学数据分析实践 李丹 宋立桓 蔡伟祺 清华大学出版社9787302673484》【摘要 书评 试读】- 京东图书 (jd.com)
R语言医学数据分析实践-R语言的数据结构-CSDN博客
在医学领域中,R语言的数据框(data frame)是一种非常常用的数据结构,用于存储和处理医学数据。数据框中可以包含多种类型的数据,如患者姓名、年龄、性别、体重、症状、诊断结果等信息,便于医学研究人员对数据进行整理、分析和可视化。
在R语言中,数据框提供了丰富的函数和方法,使医学研究人员能够方便地处理和分析医学数据。通过结合数据框和其他R语言的数据分析工具,医学工作者可以更快速地从大量的医学数据中提取有用信息,为医学研究和临床实践提供支持。创建数据库的R代码如下:
patient_data <- data.frame(Patient_ID = c(1, 2, 3, 4),Age = c(35, 42, 28, 56),Gender = c("Male", "Female", "Male", "Female"),Diagnosis = c("Hypertension", "Diabetes", "Obesity", "Heart Disease")
) #创建数据框
patient_data #查看数据框
patient_data$Age
patient_data[,2]
subset(patient_data, Age > 36)
代码运行结果如下图所示,创建了一个包含患者ID、年龄、性别和诊断结果的数据框。当我们要访问数据框中的元素时,可以使用$符号或[row,col]的方式。例如,可以使用patient_data$Age或patient_data[,2]来访问病人的年龄数据。当我们要按照条件提取数据框的内容时,可以使用subset()函数。例如,使用subset(patient_data, Age > 36)来筛选年龄大于36岁的病人信息。
另外,介绍一下基础的数据集合并操作cbind。cbind是按列进行合并,即把所有列叠加在一起。m列的矩阵与n列的矩阵执行cbind()操作后变成m+n列。合并的前提是,cbind(a, c)中的矩阵a与矩阵c的行数必须相同。R代码如下:
num<-c(1,2,3,4)
letter<-c("A","F","C","D")
score<-c(60,80,50,90)
sex<-c("M","F","M","M")
df1<-data.frame(num,letter)
df2<-data.frame(score,sex)
cb<-cbind(df1,df2)
print(cb)
代码运行结果如下图所示,把两个行数相同的矩阵合并为一个新的矩阵。
相关文章:

R语言的数据结构-数据框
【图书推荐】《R语言医学数据分析实践》-CSDN博客 《R语言医学数据分析实践 李丹 宋立桓 蔡伟祺 清华大学出版社9787302673484》【摘要 书评 试读】- 京东图书 (jd.com) R语言医学数据分析实践-R语言的数据结构-CSDN博客 在医学领域中,R语言的数据框(…...

分布式全文检索引擎ElasticSearch-数据的写入存储底层原理
一、数据写入的核心流程 当向 ES 索引写入数据时,整体流程如下: 1、客户端发送写入请求 客户端向 ES 集群的任意节点(称为协调节点,Coordinating Node)发送一个写入请求,比如 index(插入或更…...

react中实现导出excel文件
react中实现导出excel文件 一、安装依赖二、实现导出功能三、自定义列标题四、设置列宽度五、样式优化1、安装扩展库2、设置样式3、扩展样式功能 在 React 项目中实现点击按钮后导出数据为 Excel 文件,可以使用 xlsx 和 file-saver 这两个库。 一、安装依赖 在项目…...

有监督学习 vs 无监督学习:机器学习的两大支柱
有监督学习 vs 无监督学习:机器学习的两大支柱 有监督学习 vs 无监督学习:机器学习的两大支柱一、有无“老师”来指导二、解决的问题类型不同三、模型的输出不同 有监督学习 vs 无监督学习:机器学习的两大支柱 在机器学习的奇妙世界里&#…...

c4d动画怎么导出mp4视频,c4d动画视频格式设置
宝子们,今天来给大家讲讲 C4D 咋导出mp4视频的方法。通过用图文教程的形式给大家展示得明明白白的,让你能轻松理解和掌握,不管是理论基础,还是实际操作和技能技巧,都能学到,快速入门然后提升自己哦。 c4d动…...

差分矩阵(Difference Matrix)与累计和矩阵(Running Sum Matrix)的概念与应用:中英双语
本文是学习这本书的笔记: https://web.stanford.edu/~boyd/vmls/ 差分矩阵(Difference Matrix)与累计和矩阵(Running Sum Matrix)的概念与应用 在线性代数和信号处理等领域中,矩阵运算常被用来表示和计算各种数据变换…...
全面解析 Golang Gin 框架
1. 引言 在现代 Web 开发中,随着需求日益增加,开发者需要选择合适的工具来高效地构建应用程序。对于 Go 语言(Golang)开发者来说,Gin 是一个备受青睐的 Web 框架。它轻量、性能高、易于使用,并且具备丰富的…...
全脐点曲面当且仅当平面或者球面的一部分
S 是全脐点曲面当且仅当 S 是平面或者球面的一部分。 S_\text{ 是全脐点曲面当且仅当 }{S_\text{ 是平面或者球面的一部分。}} S 是全脐点曲面当且仅当 S 是平面或者球面的一部分。 证: 充分性显然,下证必要性。 若 r ( u , v ) r(u,v) r(u,v)是…...

CSS学习记录18
CSS渐变 CSS渐变您可以显示两种或多种指定颜色之间的平滑过渡。 CSS定义了两种渐变类型: 线性渐变(向下/向上/向左/向右/对角线)径向渐变(由其中心定义) CSS线性渐变 如需创建线性渐变,您必须至少两个色…...

实验13 C语言连接和操作MySQL数据库
一、安装MySQL 1、使用包管理器安装MySQL sudo apt update sudo apt install mysql-server2、启动MySQL服务: sudo systemctl start mysql3、检查MySQL服务状态: sudo systemctl status mysql二、安装MySQL开发库 sudo apt-get install libmysqlcli…...

90度Floating B to B 高速连接器信号完整性仿真
在180度 B to B Connector 信号完整性仿真时,不会碰到端口设置不方便问题,但在做90度B to B Connector信号完整性仿真时就会碰到端口设置问题。如下面的90度B to B Connector。 公座 母座 公母对插后如下: 客户要求改Connector需符合PCI-E3.…...

【踩坑】Pytorch与CUDA版本的关系及安装
Pytorch、CUDA和CUDA Toolkit区分 查看当前环境常用shell命令python脚本 Driver API CUDA(nvidia-smi)Runtime API CUDA(nvcc --version)pytorch选择CUDA版本的顺序安装需要的CUDA,多版本共存和自由切换 本文参考 http…...
信息隐藏 数字图像空域隐写与分析技术的实现
数字图像隐写与分析 摘要 随着信息技术的发展,隐写术作为一种信息隐藏技术,越来越受到关注。本文介绍了一种基于最低有效位(LSB)方法的数字图像隐写技术,并实现了隐写数据的嵌入与提取。通过卡方检验分析隐写图像的统计特性,评估隐写数据对图像的影响。实验结果表明,该…...
halcon单相机+机器人*眼在手外标定心得
目的 得到相机坐标系下的点与机器人底座base的转换关系,camera_in_base 两个不确定的定量 1,相机与机器人底座base之间的相对位置是固定的,既camera_in_base 2,机械手末端与标定物 tool_in_obj是固定的 辅助确定量 工作台与相…...
pytest入门十:配置文件
pytest.ini:pytest的主配置文件,可以改变pytest的默认行为conftest.py:测试用例的一些fixture配置 pytest.ini marks mark 打标的执行 pytest.mark.add add需要些marks配置否则报warning [pytest] markersadd:测试打标 测试用例中添加了 p…...

基于Clinical BERT的医疗知识图谱自动化构建方法,双层对比框架
基于Clinical BERT的医疗知识图谱自动化构建方法,双层对比框架 论文大纲理解1. 确认目标2. 目标-手段分析3. 实现步骤4. 金手指分析 全流程核心模式核心模式提取压缩后的系统描述核心创新点 数据分析第一步:数据收集第二步:规律挖掘第三步&am…...
介绍 Html 和 Html 5 的关系与区别
HTML(HyperText Markup Language)是构建网页的标准标记语言,而 HTML5 是 HTML 的最新版本,包含了一些新的功能、元素、API 和属性。HTML5 相对于早期版本的 HTML(比如 HTML4)有许多重要的改进和变化。以下是…...
C05S13-MySQL数据库备份与恢复
一、MySQL数据备份 1. 数据备份概述 数据备份的主要目的是灾难恢复,也就是当数据库等出现故障导致数据丢失,能够通过备份恢复数据。 数据备份可以分为物理备份和逻辑备份。物理备份,又称为冷备份,需要关闭数据库进行备份&#…...

【MySQL — 数据库基础】深入理解数据库服务与数据库关系、MySQL连接创建、客户端工具及架构解析
目录 1. 数据库服务&数据库&表之间的关系 1.1 复习 my.ini 1.2 MYSQL服务基于mysqld启动而启动 1.3 数据库服务的具体含义 1.4 数据库服务&数据库&表之间的关系 2. 客户端工具 2.1 客户端连接MySQL服务器 2.2 客…...

Three.js相机Camera控件知识梳理
原文:https://juejin.cn/post/7231089453695238204?searchId20241217193043D32C9115C2057FE3AD64 1. 相机类型 Three.js 主要提供了两种类型的相机:正交相机(OrthographicCamera)和透视相机(PerspectiveCamera&…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...