当前位置: 首页 > news >正文

基于SIFT的目标识别算法

基于SIFT(Scale-Invariant Feature Transform)的目标识别算法是一种经典的计算机视觉算法,用于在图像中寻找和匹配具有尺度不变性的特征点,从而实现目标的快速而准确的识别。

SIFT算法的主要步骤包括以下几个阶段:

  1. 尺度空间极值点检测:通过构建高斯金字塔,检测图像在不同尺度上的极值点。该步骤旨在寻找具有不同尺度下显著变化的关键点。

  2. 关键点定位:对极值点进行精确定位,剔除低对比度的关键点和边缘响应点,并通过利用主曲率方向来提高关键点的旋转不变性。

  3. 方向分配:为每个关键点分配一个或多个主方向,使描述子具有旋转不变性。

  4. 特征描述:根据关键点的尺度和方向,在其周围的局部图像区域内计算描述子。描述子表示了关键点周围的图像特征,通常采用基于梯度的直方图表示。

  5. 特征匹配:通过计算两幅图像中的特征描述子之间的距离或相似度,进行特征点的匹配。常用的方法是基于欧氏距离或汉明距离的最近邻搜索。

  6. 匹配筛选:根据匹配的特征点对之间的距离,使用比值测试或其他方法进行匹配筛选,剔除错误匹配。

基于SIFT的目标识别算法在实际应用中具有广泛的应用,例如图像拼接、物体识别、图像检索等。以下是一个使用OpenCV库实现基于SIFT的目标识别的Python示例代码:

import cv2# 加载图像
image = cv2.imread("image.jpg", cv2.IMREAD_GRAYSCALE)# 初始化SIFT对象
sift = cv2.SIFT_create()# 检测关键点和计算描述子
keypoints, descriptors = sift.detectAndCompute(image, None)# 显示关键点
image_with_keypoints = cv2.drawKeypoints(image, keypoints, None)# 在图像中绘制关键点
cv2.imshow("SIFT Keypoints", image_with_keypoints)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中,我们首先加载待识别的图像,并通过SIFT_create()函数创建了一个SIFT对象。然后使用detectAndCompute()方法来同时检测关键点并计算描述子。最后,我们使用drawKeypoints()函数将检测到的关键点绘制在图像上,并通过OpenCV的GUI函数显示结果。

需要注意的是,该示例仅展示了SIFT算法的关键点检测部分。在实际的目标识别任务中,还需要进行特征匹配和筛选等步骤,以实现目标的准确识别。这些步骤可以使用诸如KNN(K-Nearest Neighbors)或RANSAC(RANdom SAmple Consensus)等算法来实现。

相关文章:

基于SIFT的目标识别算法

基于SIFT(Scale-Invariant Feature Transform)的目标识别算法是一种经典的计算机视觉算法,用于在图像中寻找和匹配具有尺度不变性的特征点,从而实现目标的快速而准确的识别。 SIFT算法的主要步骤包括以下几个阶段: 尺…...

计算机组成原理的学习笔记(4)--数据的表示与运算·其三 补码的乘法以及原码补码的除法

学习笔记 前言 本文主要是对于b站尚硅谷的计算机组成原理的学习笔记,仅用于学习交流。 1.补码乘法 基本操作 与正常原码乘法差不多,逐位乘,随后相加,而与符号位有关的一项也叫校正项 Booth算法 从乘数的最低位开始&#xff0c…...

压缩glb模型文件

使用?gltf-pipeline进行压缩: GitHub地址[这里是图片001]https://github.com/CesiumGS/gltf-pipeline 1. 安装gltf-pipeline npm install -g gltf-pipeline2. 在glb文件目录打开cmd进行命令行压缩: // cmd: gltf-pipeline -i glb.glb -d -s以下是 -…...

vertx idea快速使用

目录 1.官网下载项目 2.修改代码 2.1拷贝代码方式 为了能够快速使用,我另外创建一个新的maven项目,将下载项目的src文件和pom文件拷贝到新建的maven项目。 2.2删除.mvn方式 3.更新配置 4.配置application 5.idea启动项目 1.官网下载项目 从vert…...

如何创建属于自己的大语言模型:从零开始的指南

如何创建属于自己的大语言模型:从零开始的指南 为什么要创建自己的大语言模型? 随着人工智能的快速发展,大语言模型(LLM)在各种场景中表现出了卓越的能力,例如文本生成、对话交互和内容总结等。虽然市场上…...

debian linux 连网自动调整时间 (报错 Unit systemd-timesyncd.service could not be found.)

debian linux 连网自动调整时间 如果有报错 Unit systemd-timesyncd.service could not be found. 就用 apt 装一下 systemd-timesyncd 吧 参考: https://github.com/MichaIng/DietPi/issues/5472 sudo apt-get install systemd-timesyncd... ┌──(kali㉿kali)-[~] └─$ t…...

监控易在汽车制造行业信息化运维中的应用案例

引言 随着汽车制造行业的数字化转型不断深入,信息化类IT软硬件设备的运行状态监控、故障告警、报表报告以及网络运行状态监控等成为了企业运维管理的关键环节。监控易作为一款全面、高效的信息化运维管理工具,在汽车制造行业中发挥着重要作用。本文将结合…...

es使用knn向量检索中numCandidates和k应该如何配比更合适

在Elasticsearch(ES)中,KNN(k-最近邻)向量检索是一种高效的向量相似性搜索方法,广泛应用于推荐系统、图像搜索、自然语言处理等领域。在KNN检索中,k 和 numCandidates 是两个关键参数&#xff0…...

推挽输出和开漏输出

推挽输出:能真正的输出高低电平 开漏输出:无法正真的输出高电平(会分压),高电平时没有驱动能力,需要借助外部上拉电阻完成对外驱动...

Cesium引入天地图、高德、百度地图

这里借助了ceisum-map开源项目进行了实现。 cesium-map中的百度地图存在一定问题,使用矢量地图的时候,感觉地图的样式不太理想,而且卫星底图仅显示了东半球,所以自己写了个一个提供器,也存在一定的问题,在0…...

windows自带16进制转10进制

简单的 A->10 如下 11A9 ---》4521 正数解算(最高位为 0,为正值): 0x11A9 解算为 4521 11A9H 4521D 如果是负数 最高位为 1,为负值): 0xE7B0 解算为 -6220 E7B0H (E7B0H - FFFFH)1 -62…...

Redis应用—9.简单应用汇总

大纲 1.基于Redis实现的简单缓存机制(String数据结构) 2.实现一个最简单的分布式锁(String数据结构) 3.博客网站的文章发布与查看(String数据结构) 4.博客字数统计与文章预览(String数据结构) 5.用户操作日志审计功能(String数据结构) 6.实现一个简单的唯一ID生成器(incr…...

powershell基础(1)

powershell基础(1) 1. 安装PowerShell 首先,确保你的计算机上已经安装了PowerShell。对于Windows 10及更高版本,PowerShell通常是默认安装的。你也可以从微软官网下载并安装最新版本的PowerShell Core。 2. 打开PowerShell 在Windows搜索栏中输入“P…...

【NLP 18、新词发现和TF·IDF】

目录 一、新词发现 1.新词发现的衡量标准 ① 内部稳固 ② 外部多变 2.示例 ① 初始化类 NewWordDetect ② 加载语料信息,并进行统计 ③ 统计指定长度的词频及其左右邻居字符词频 ④ 计算熵 ⑤ 计算左右熵 ​编辑 ⑥ 统计词长总数 ⑦ 计算互信息 ⑧ 计算每个词…...

C# 从控制台应用程序入门

总目录 前言 从创建并运行第一个控制台应用程序,快速入门C#。 一、新建一个控制台应用程序 控制台应用程序是C# 入门时,学习基础语法的最佳应用程序。 打开VS2022,选择【创建新项目】 搜索【控制台】,选择控制台应用(.NET Framew…...

怿星科技联合赛力斯举办workshop活动,进一步推动双方合作

12月18日,由怿星科技与赛力斯汽车联合举办的workshop活动在赛力斯五云湖总部展开,双方嘉宾围绕智能汽车发展趋势、行业前沿技术、汽车电子网络与功能测试等核心议题展开了深度对话与交流,并现场参观演示了多套前沿产品。怿星科技CEO潘凯、汽车…...

JVM和数据库面试知识点

JVM内存结构 主要有几部分:堆、栈、方法区和程序计数器 堆是JVM中最大的一块内存区域,用于存储对象实例,一般通过new创建的对象都存放在堆中。堆被所有的线程共享,但是它的访问时线程不安全的,通常通过锁的机制来保证线…...

批量提取zotero的论文构建知识库做问答的大模型(可选)——含转存PDF-分割统计PDF等

文章目录 提取zotero的PDF上传到AI平台保留文件名代码分成20个PDF视频讲解 提取zotero的PDF 右键查看目录 发现目录为 C:\Users\89735\Zotero\storage 写代码: 扫描路径‘C:\Users\89735\Zotero\storage’下面的所有PDF文件,全部复制一份汇总到"C:\Users\89735\Downl…...

Codeforces Round 993 (Div. 4)个人训练记录

Codeforces Round 993 (Div. 4) 只选择对我有价值的题目记录 E. Insane Problem 题目描述 给定五个整数 k k k, l 1 l_1 l1​, r 1 r_1 r1​, l 2 l_2 l2​ 和 r 2 r_2 r2​,Wave 希望你帮助她计算满足以下所有条件的有序对 …...

【优选算法---分治】快速排序三路划分(颜色分类、快速排序、数组第K大的元素、数组中最小的K个元素)

一、颜色分类 题目链接: 75. 颜色分类 - 力扣(LeetCode) 题目介绍: 给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地 对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

docker 部署发现spring.profiles.active 问题

报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

windows系统MySQL安装文档

概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...