2024年图像处理、多媒体技术与机器学习
重要信息
官网:www.ipmml.org
时间:2024年12月27-29日
地点:中国-大理
简介
2024年图像处理、多媒体技术与机器学习(CIPMT 2024)将于2024年12月27-29日于中国大理召开。将围绕图像处理与多媒体技术、机器学习等在相关领域中的最新研究成果,为来自国内外高等院校、科学研究所、企事业单位的专家、教授、学者、工程师等提供一个分享专业经验,扩大专业网络,面对面交流新思想以及展示研究成果的国际平台,探讨本领域发展所面临的关键性挑战问题和研究方向,以期推动该领域理论、技术在高校和企业的发展和应用,
组委
大会顾问主席: Sos Agaian教授,SPIE Fellow, IEEE Fellow,IS&T Fellow,AAAS Fellow,纽约市立大学史坦顿岛学院,美国 唐远炎教授,IEEE Life Fellow, IAPR Fellow, AAIA Fellow ,澳门大学,中国 陈晓华教授,IEEE Fellow, IET Fellow, BCS Fellow, AAIA Fellow,国立成功大学,中国 李克勤教授,IEEE Member,AAIA Member,AAAS Member,ACIS Member,美国纽约州立大学 |
主讲
| 秦川教授,上海理工大学,中国
上海理工大学现任教授。CCF、CSIG高级会员。研究兴趣包括图像处理、多媒体安全和人工智能安全。秦教授在IEEE TIP、IEEE TIFS、IEEE TMM、IEEE TCSVT和ACM Multimedia等期刊和会议上发表了150多篇同行评审论文。 入选Elsevier 2020年高被引华人研究员,获CIHW 2016最佳论文奖,IEEE IIHMSP 2014优秀论文候选人,曾担任Signal Processing (Elsevier)和Journal of Visual Communication and Image Representation (Elsevier)的副主编。 |
| 张卫山教授,中国石油大学(华东),中国 中国科学院自动化所客座研究员,山东省可信人工智能生态数据开放创新应用实验室负责人。青岛市人工智能学会理事长,中国自动化学会联邦数据与联邦智能专委会副主任,中国计算机学会高级会员。近五年SCI期刊论文70余篇(其中二区以上的20余篇)。包括TCC、TII、TSC等。发表英文国际会议论文70余篇。 到2023年12月,按照Google Scholar的统计,总引用数量超过3200,H-index为28,i10-index为80。高被引论文3篇,其中联邦学习相关论文ESI高被引2篇。 |
| 石争浩教授,西安理工大学,中国
|
| 张习文教授,北京语言大学,中国
|
主题
多媒体技术:多媒体信息处理;多媒体数据压缩编码;多媒体内容分析与检索技术;多媒体交互与集成;多媒体通信与网络;多媒体内容安全;多媒体系统与虚拟现实等
图像处理:图像传输、图像和视频感知和质量模型、图像存储、检索和身份验证、数字信号处理、光信号处理、图像采集、模式识别与分析、图像压缩、图像处理体系结构、文档图像处理、图像编码与压缩、实时信号处理、图像处理、修复和增强、图像扫描、人脸识别、图像分割、立体电视、数码摄影、图像特征提取等
机器学习:智能数据分析、建模和识别、多任务和迁移学习、机器学习算法、深度学习、人工智能、智能搜索、数据挖掘、数据存取、模式识别、智慧交通、信息系统安全、数据压缩、数据加密、移动计算、无线传感器网络、多媒体网络、神经网络、机器人控制、信号检测与估计、生物信息处理、智能系统、统计学习、贝叶斯网络等
日程
日期 | 时间 | 内容 |
2024年12月27日 | 13:00-17:00 | 报名注册 |
2024年12月28日 | 09:00-12:00 | 主题报告 |
12:00-14:00 | 午餐时间 | |
14:00-17:30 | 口头报告 | |
18:00-19:30 | 晚宴 | |
2024年12月29日 | 09:00-18:00 | 学术考察活动 |
相关文章:

2024年图像处理、多媒体技术与机器学习
重要信息 官网:www.ipmml.org 时间:2024年12月27-29日 地点:中国-大理 简介 2024年图像处理、多媒体技术与机器学习(CIPMT 2024)将于2024年12月27-29日于中国大理召开。将围绕图像处理与多媒体技术、机器学习等在…...

java 1.8+springboot文件上传+vue3+ts+antdv
1.参考 使用SpringBoot优雅的实现文件上传_51CTO博客_springboot 上传文件 2.postman测试 报错 :postman调用时body参数中没有file单词 Resolved [org.springframework.web.multipart.support.MissingServletRequestPartException: Required request part file is…...
【机器人】机械臂轨迹和转矩控制对比
动力学控制和轨迹跟踪控制是机器人控制中的两个概念,它们在目标、方法和应用上有所不同,但也有一定关联。以下是它们的区别和联系: 1. 动力学控制 动力学控制是基于机器人动力学模型的控制方法,目标是控制机器人关节力矩或力&…...
如何利用矩阵化简平面上的二次型曲线
二次型曲线的定义 在二维欧式平面上,一个二次型曲线都可以写成一个关于 x , y x,y x,y的二元二次多项式: F ( x , y ) a 11 x 2 2 a 12 x y a 22 y 2 2 a 1 x 2 a 2 y a 0 0 \begin{equation} F(x,y)a_{11}x^22a_{12}xya_{22}y^22a_1x2a_2ya_00…...

【系统移植】制作SD卡启动——将uboot烧写到SD卡
在开发板上启动Linux内核,一般有两种方法,一种是从EMMC启动,还有一种就是从SD卡启动,不断哪种启动方法,当开发板上电之后,首先运行的是uboot。 制作SD卡启动,首先要将uboot烧写到SD卡ÿ…...

sql server 数据库还原,和数据检查
右键数据库选择还原, 还原的备份文件必须选择在本地的文件(远程文件没有试过)还原数据库名字可以修改,然后file选择中有个2个目录data file 的目录 ,和log data 的目录都可以重新选择还原到的新的目录,不要…...

工业大数据分析算法实战-day12
文章目录 day12时序分解STL(季节性趋势分解法)奇异谱分析(SSA)经验模态分解(EMD) 时序分割ChangpointTreeSplitAutoplait有价值的辅助 时序再表征 day12 今天是第12天,昨天主要是针对信号处理算…...

Hive其一,简介、体系结构和内嵌模式、本地模式的安装
目录 一、Hive简介 二、体系结构 三、安装 1、内嵌模式 2、测试内嵌模式 3、本地模式--最常使用的模式 一、Hive简介 Hive 是一个框架,可以通过编写sql的方式,自动的编译为MR任务的一个工具。 在这个世界上,会写SQL的人远远大于会写ja…...

LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测 目录 LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.LSTM-SVM时序预测 | Matlab基于LSTM…...
MacPorts 中安装高/低版本软件方式,以 RabbitMQ 为例
查询信息 这里以 RabbitMQ 为例,通过搜索得到默认安装版本信息: port search rabbitmq-server结果 ~/Downloads> port search rabbitmq-server rabbitmq-server 3.11.15 (net)The RabbitMQ AMQP Server ~/Downloads>获取二进制文件 但当前官网…...

CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击
Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning 摘要-Abstract引言-Introduction相关工作及前期准备-Related Work and Preliminaries1. 黑盒对抗攻击2. SGD的渐近正态性 提出的方法-Proposed Method随机 BIM 的渐近正态…...

建投数据与腾讯云数据库TDSQL完成产品兼容性互认证
近日,经与腾讯云联合测试,建投数据自主研发的人力资源信息管理系统V3.0、招聘管理系统V3.0、绩效管理系统V2.0、培训管理系统V3.0通过腾讯云数据库TDSQL的技术认证,符合腾讯企业标准的要求,产品兼容性良好,性能卓越。 …...

群晖利用acme.sh自动申请证书并且自动重载证书的问题解决
前言 21年的时候写了一个在群晖(黑群晖)下利用acme.sh自动申请Let‘s Encrypt的脚本工具 群晖使用acme自动申请Let‘s Encrypt证书脚本,自动申请虽然解决了,但是自动重载一直是一个问题,本人也懒,一想到去…...
质量小议51 - 茧房
茧房:茧房是指蚕茧所建的住所或空间,由一个蚕丝囊完全包裹住的一个密封的空间。 -- CSDN创作助手 信息茧房 - 指通过互联网和数字技术,将个人封闭在一个虚拟的信息环境中,使其只接收来自特定渠道的信息,而屏蔽其他信息…...

【C++图论】2359. 找到离给定两个节点最近的节点|1714
本文涉及知识点 C图论 打开打包代码的方法兼述单元测试 LeetCode2359. 找到离给定两个节点最近的节点 给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,每个节点 至多 有一条出边。 有向图用大小为 n 下标从 0 开始的数组 edges 表示,…...
重拾设计模式-外观模式和适配器模式的异同
文章目录 目的不同适配器模式:外观模式: 结构和实现方式不同适配器模式:外观模式: 对客户端的影响不同适配器模式:外观模式: 目的不同 适配器模式: 主要目的是解决两个接口不兼容的问题&#…...

51c自动驾驶~合集42
我自己的原文哦~ https://blog.51cto.com/whaosoft/12888355 #DriveMM 六大数据集全部SOTA!最新DriveMM:自动驾驶一体化多模态大模型(美团&中山大学) 近年来,视觉-语言数据和模型在自动驾驶领域引起了广泛关注…...
34 Opencv 自定义角点检测
文章目录 cornerEigenValsAndVecscornerMinEigenVal示例 cornerEigenValsAndVecs void cornerEigenValsAndVecs(InputArray src, --单通道输入8位或浮点图像OutputArray dst, --输出图像,同源图像或CV_32FC(6)int blockSize, --邻域大小值int ape…...

信创技术栈发展现状与展望:机遇与挑战并存
一、引言 在信息技术应用创新(信创)战略稳步推进的大背景下,我国信创技术栈已然在诸多关键层面收获了亮眼成果,不过也无可避免地遭遇了一系列亟待攻克的挑战。信创产业作为我国达成信息技术自主可控这一目标的关键一招,…...
跟我学c++中级篇——C++中的缓存利用
一、缓存 学习过计算机知识的一般都知道缓存这个概念,大约也知道缓存是什么。但是如果是程序员,如何更好的利用缓存,可能就有很多人不太清楚了。其实缓存的目的非常简单,就是了更高效的操作数据。大家都听说过“局部性原理”&…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...