深度学习之超分辨率算法——FRCNN
– 对之前SRCNN算法的改进
-
- 输出层采用转置卷积层放大尺寸,这样可以直接将低分辨率图片输入模型中,解决了输入尺度问题。
- 改变特征维数,使用更小的卷积核和使用更多的映射层。卷积核更小,加入了更多的激活层。
- 共享其中的映射层,如果需要训练不同上采样倍率的模型,只需要修改最后的反卷积层大小,就可以训练出不同尺寸的图片。
- 模型实现

import math
from torch import nnclass FSRCNN(nn.Module):def __init__(self, scale_factor, num_channels=1, d=56, s=12, m=4):super(FSRCNN, self).__init__()self.first_part = nn.Sequential(nn.Conv2d(num_channels, d, kernel_size=5, padding=5//2),nn.PReLU(d))# 添加入多个激活层和小卷积核self.mid_part = [nn.Conv2d(d, s, kernel_size=1), nn.PReLU(s)]for _ in range(m):self.mid_part.extend([nn.Conv2d(s, s, kernel_size=3, padding=3//2), nn.PReLU(s)])self.mid_part.extend([nn.Conv2d(s, d, kernel_size=1), nn.PReLU(d)])self.mid_part = nn.Sequential(*self.mid_part)# 最后输出self.last_part = nn.ConvTranspose2d(d, num_channels, kernel_size=9, stride=scale_factor, padding=9//2,output_padding=scale_factor-1)self._initialize_weights()def _initialize_weights(self):# 初始化for m in self.first_part:if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))nn.init.zeros_(m.bias.data)for m in self.mid_part:if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))nn.init.zeros_(m.bias.data)nn.init.normal_(self.last_part.weight.data, mean=0.0, std=0.001)nn.init.zeros_(self.last_part.bias.data)def forward(self, x):x = self.first_part(x)x = self.mid_part(x)x = self.last_part(x)return x
以上代码中,如起初所说,将SRCNN中给的输出修改为转置卷积,并且在中间添加了多个11卷积核和多个线性激活层。且应用了权重初始化,解决协变量偏移问题。
备注:11卷积核虽然在通道的像素层面上,针对一个像素进行卷积,貌似没有什么作用,但是卷积神经网络的特性,我们在利用多个卷积核对特征图进行扫描时,单个卷积核扫描后的为sum©,那么就是尽管在像素层面上无用,但是在通道层面上进行了融合,并且进一步加深了层数,使网络层数增加,网络能力增强。
- 上代码
- train.py
训练脚本
import argparse
import os
import copyimport torch
from torch import nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdmfrom models import FSRCNN
from datasets import TrainDataset, EvalDataset
from utils import AverageMeter, calc_psnrif __name__ == '__main__':parser = argparse.ArgumentParser()# 训练文件parser.add_argument('--train-file', type=str,help="the dir of train data",default="./Train/91-image_x4.h5")# 测试集文件parser.add_argument('--eval-file', type=str,help="thr dir of test data ",default="./Test/Set5_x4.h5")# 输出的文件夹parser.add_argument('--outputs-dir',help="the output dir", type=str,default="./outputs")parser.add_argument('--weights-file', type=str)parser.add_argument('--scale', type=int, default=2)parser.add_argument('--lr', type=float, default=1e-3)parser.add_argument('--batch-size', type=int, default=16)parser.add_argument('--num-epochs', type=int, default=20)parser.add_argument('--num-workers', type=int, default=8)parser.add_argument('--seed', type=int, default=123)args = parser.parse_args()args.outputs_dir = os.path.join(args.outputs_dir, 'x{}'.format(args.scale))if not os.path.exists(args.outputs_dir):os.makedirs(args.outputs_dir)cudnn.benchmark = Truedevice = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')torch.manual_seed(args.seed)model = FSRCNN(scale_factor=args.scale).to(device)criterion = nn.MSELoss()optimizer = optim.Adam([{'params': model.first_part.parameters()},{'params': model.mid_part.parameters()},{'params': model.last_part.parameters(), 'lr': args.lr * 0.1}], lr=args.lr)train_dataset = TrainDataset(args.train_file)train_dataloader = DataLoader(dataset=train_dataset,batch_size=args.batch_size,shuffle=True,num_workers=args.num_workers,pin_memory=True)eval_dataset = EvalDataset(args.eval_file)eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)best_weights = copy.deepcopy(model.state_dict())best_epoch = 0best_psnr = 0.0for epoch in range(args.num_epochs):model.train()epoch_losses = AverageMeter()with tqdm(total=(len(train_dataset) - len(train_dataset) % args.batch_size), ncols=80) as t:t.set_description('epoch: {}/{}'.format(epoch, args.num_epochs - 1))for data in train_dataloader:inputs, labels = datainputs = inputs.to(device)labels = labels.to(device)preds = model(inputs)loss = criterion(preds, labels)epoch_losses.update(loss.item(), len(inputs))optimizer.zero_grad()loss.backward()optimizer.step()t.set_postfix(loss='{:.6f}'.format(epoch_losses.avg))t.update(len(inputs))torch.save(model.state_dict(), os.path.join(args.outputs_dir, 'epoch_{}.pth'.format(epoch)))model.eval()epoch_psnr = AverageMeter()for data in eval_dataloader:inputs, labels = datainputs = inputs.to(device)labels = labels.to(device)with torch.no_grad():preds = model(inputs).clamp(0.0, 1.0)epoch_psnr.update(calc_psnr(preds, labels), len(inputs))print('eval psnr: {:.2f}'.format(epoch_psnr.avg))if epoch_psnr.avg > best_psnr:best_epoch = epochbest_psnr = epoch_psnr.avgbest_weights = copy.deepcopy(model.state_dict())print('best epoch: {}, psnr: {:.2f}'.format(best_epoch, best_psnr))torch.save(best_weights, os.path.join(args.outputs_dir, 'best.pth'))
test.py 测试脚本
import argparseimport torch
import torch.backends.cudnn as cudnn
import numpy as np
import PIL.Image as pil_imagefrom models import FSRCNN
from utils import convert_ycbcr_to_rgb, preprocess, calc_psnrif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights-file', type=str, required=True)parser.add_argument('--image-file', type=str, required=True)parser.add_argument('--scale', type=int, default=3)args = parser.parse_args()cudnn.benchmark = Truedevice = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')model = FSRCNN(scale_factor=args.scale).to(device)state_dict = model.state_dict()for n, p in torch.load(args.weights_file, map_location=lambda storage, loc: storage).items():if n in state_dict.keys():state_dict[n].copy_(p)else:raise KeyError(n)model.eval()image = pil_image.open(args.image_file).convert('RGB')image_width = (image.width // args.scale) * args.scaleimage_height = (image.height // args.scale) * args.scalehr = image.resize((image_width, image_height), resample=pil_image.BICUBIC)lr = hr.resize((hr.width // args.scale, hr.height // args.scale), resample=pil_image.BICUBIC)bicubic = lr.resize((lr.width * args.scale, lr.height * args.scale), resample=pil_image.BICUBIC)bicubic.save(args.image_file.replace('.', '_bicubic_x{}.'.format(args.scale)))lr, _ = preprocess(lr, device)hr, _ = preprocess(hr, device)_, ycbcr = preprocess(bicubic, device)with torch.no_grad():preds = model(lr).clamp(0.0, 1.0)psnr = calc_psnr(hr, preds)print('PSNR: {:.2f}'.format(psnr))preds = preds.mul(255.0).cpu().numpy().squeeze(0).squeeze(0)output = np.array([preds, ycbcr[..., 1], ycbcr[..., 2]]).transpose([1, 2, 0])output = np.clip(convert_ycbcr_to_rgb(output), 0.0, 255.0).astype(np.uint8)output = pil_image.fromarray(output)# 保存图片output.save(args.image_file.replace('.', '_fsrcnn_x{}.'.format(args.scale)))
datasets.py
数据集的读取
import h5py
import numpy as np
from torch.utils.data import Datasetclass TrainDataset(Dataset):def __init__(self, h5_file):super(TrainDataset, self).__init__()self.h5_file = h5_filedef __getitem__(self, idx):with h5py.File(self.h5_file, 'r') as f:return np.expand_dims(f['lr'][idx] / 255., 0), np.expand_dims(f['hr'][idx] / 255., 0)def __len__(self):with h5py.File(self.h5_file, 'r') as f:return len(f['lr'])class EvalDataset(Dataset):def __init__(self, h5_file):super(EvalDataset, self).__init__()self.h5_file = h5_filedef __getitem__(self, idx):with h5py.File(self.h5_file, 'r') as f:return np.expand_dims(f['lr'][str(idx)][:, :] / 255., 0), np.expand_dims(f['hr'][str(idx)][:, :] / 255., 0)def __len__(self):with h5py.File(self.h5_file, 'r') as f:return len(f['lr'])
工具文件utils.py
- 主要用来测试psnr指数,图片的格式转换(悄悄说一句,opencv有直接实现~~~)
import torch
import numpy as npdef calc_patch_size(func):def wrapper(args):if args.scale == 2:args.patch_size = 10elif args.scale == 3:args.patch_size = 7elif args.scale == 4:args.patch_size = 6else:raise Exception('Scale Error', args.scale)return func(args)return wrapperdef convert_rgb_to_y(img, dim_order='hwc'):if dim_order == 'hwc':return 16. + (64.738 * img[..., 0] + 129.057 * img[..., 1] + 25.064 * img[..., 2]) / 256.else:return 16. + (64.738 * img[0] + 129.057 * img[1] + 25.064 * img[2]) / 256.def convert_rgb_to_ycbcr(img, dim_order='hwc'):if dim_order == 'hwc':y = 16. + (64.738 * img[..., 0] + 129.057 * img[..., 1] + 25.064 * img[..., 2]) / 256.cb = 128. + (-37.945 * img[..., 0] - 74.494 * img[..., 1] + 112.439 * img[..., 2]) / 256.cr = 128. + (112.439 * img[..., 0] - 94.154 * img[..., 1] - 18.285 * img[..., 2]) / 256.else:y = 16. + (64.738 * img[0] + 129.057 * img[1] + 25.064 * img[2]) / 256.cb = 128. + (-37.945 * img[0] - 74.494 * img[1] + 112.439 * img[2]) / 256.cr = 128. + (112.439 * img[0] - 94.154 * img[1] - 18.285 * img[2]) / 256.return np.array([y, cb, cr]).transpose([1, 2, 0])def convert_ycbcr_to_rgb(img, dim_order='hwc'):if dim_order == 'hwc':r = 298.082 * img[..., 0] / 256. + 408.583 * img[..., 2] / 256. - 222.921g = 298.082 * img[..., 0] / 256. - 100.291 * img[..., 1] / 256. - 208.120 * img[..., 2] / 256. + 135.576b = 298.082 * img[..., 0] / 256. + 516.412 * img[..., 1] / 256. - 276.836else:r = 298.082 * img[0] / 256. + 408.583 * img[2] / 256. - 222.921g = 298.082 * img[0] / 256. - 100.291 * img[1] / 256. - 208.120 * img[2] / 256. + 135.576b = 298.082 * img[0] / 256. + 516.412 * img[1] / 256. - 276.836return np.array([r, g, b]).transpose([1, 2, 0])def preprocess(img, device):img = np.array(img).astype(np.float32)ycbcr = convert_rgb_to_ycbcr(img)x = ycbcr[..., 0]x /= 255.x = torch.from_numpy(x).to(device)x = x.unsqueeze(0).unsqueeze(0)return x, ycbcrdef calc_psnr(img1, img2):return 10. * torch.log10(1. / torch.mean((img1 - img2) ** 2))class AverageMeter(object):def __init__(self):self.reset()def reset(self):self.val = 0self.avg = 0self.sum = 0self.count = 0def update(self, val, n=1):self.val = valself.sum += val * nself.count += nself.avg = self.sum / self.count
先跑他个几十轮~

相关文章:
深度学习之超分辨率算法——FRCNN
– 对之前SRCNN算法的改进 输出层采用转置卷积层放大尺寸,这样可以直接将低分辨率图片输入模型中,解决了输入尺度问题。改变特征维数,使用更小的卷积核和使用更多的映射层。卷积核更小,加入了更多的激活层。共享其中的映射层&…...
软件测试之压力测试【详解】
压力测试 压力测试是一种软件测试,用于验证软件应用程序的稳定性和可靠性。压力测试的目标是在极其沉重的负载条件下测量软件的健壮性和错误处理能力,并确保软件在危急情况下不会崩溃。它甚至可以测试超出正常工作点的测试,并评估软件在极端…...
电脑出现 0x0000007f 蓝屏问题怎么办,参考以下方法尝试解决
电脑蓝屏是让许多用户头疼的问题,其中出现 “0x0000007f” 错误代码更是较为常见且棘手。了解其背后成因并掌握修复方法,能帮我们快速恢复电脑正常运行。 一、可能的硬件原因 内存问题 内存条长时间使用可能出现物理损坏,如金手指氧化、芯片…...
分布式系统架构:限流设计模式
1.为什么要限流? 任何一个系统的运算、存储、网络资源都不是无限的,当系统资源不足以支撑外部超过预期的突发流量时,就应该要有取舍,建立面对超额流量自我保护的机制,而这个机制就是微服务中常说的“限流” 2.四种限流…...
G口带宽服务器与1G独享带宽服务器:深度剖析其差异
在数据洪流涌动的数字化时代,服务器作为数据处理的核心,其性能表现直接关系到业务的流畅度和用户体验的优劣。随着技术的飞速发展,G口带宽服务器与1G独享带宽服务器已成为众多企业的优选方案。然而,这两者之间究竟有何细微差别&am…...
Flamingo:少样本多模态大模型
Flamingo:少样本多模态大模型 论文大纲理解1. 确认目标2. 分析过程(目标-手段分析)3. 实现步骤4. 效果展示5. 金手指 解法拆解全流程核心模式提问Flamingo为什么选择使用"固定数量的64个视觉tokens"这个特定数字?这个数字的选择背…...
推荐一款免费且好用的 国产 NAS 系统 ——FnOS
一、系统基础信息 开发基础:基于最新的Linux内核(Debian发行版)深度开发,兼容主流x86硬件(ARM还没适配),自由组装NAS,灵活扩展外部存储。 使用情况:官方支持功能较多&am…...
2025系统架构师(一考就过):案例题之一:嵌入式架构、大数据架构、ISA
一、嵌入式系统架构 软件脆弱性是软件中存在的弱点(或缺陷),利用它可以危害系统安全策略,导致信息丢失、系统价值和可用性降低。嵌入式系统软件架构通常采用分层架构,它可以将问题分解为一系列相对独立的子问题,局部化在每一层中…...
开机存活脚本
vim datastadard_alive.sh #!/bin/bashPORT18086 # 替换为你想要检查的端口号 dt$(date %Y-%m-%d)# 使用netstat检查端口是否存在 if netstat -tuln | grep -q ":$PORT"; thenecho "$dt Port $PORT is in use" > /opt/datastadard/logs/alive.log# 如…...
车载网关性能 --- GW ECU报文(message)处理机制的技术解析
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源,以现象替代逻辑,以情绪代替思考,把消极接受现实的懦弱,伪装成乐观面对不幸的…...
CosyVoice安装过程详解
CosyVoice安装过程详解 安装过程参考官方文档 前情提要 环境:Windows子系统WSL下安装的Ubunt22.4python环境管理:MiniConda3git 1. Clone代码 $ git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git # 若是submodule下载失败&…...
传统网络架构与SDN架构对比
传统网络采用分布式控制,每台设备独立控制且管理耗时耗力,扩展困难,按 OSI 模型分层,成本高、业务部署慢、安全性欠佳且开放性不足。而 SDN 架构将控制平面集中到控制器,数据转发由交换机负责,可统一管理提…...
如何打造用户友好的维护页面:6个创意提升WordPress网站体验
在网站运营中,无论是个人博主还是大型企业网站的管理员,难免会遇到需要维护的情况。无论是服务器迁移、插件更新,还是突发的技术故障,都可能导致网站短暂无法访问。这时,设计维护页面能很好的缓解用户的不满࿰…...
【hackmyvm】Zday靶机wp
HMVrbash绕过no_root_squash静态编译fogproject 1. 基本信息^toc 这里写目录标题 1. 基本信息^toc2. 信息收集2.1. 端口扫描2.2. 目录扫描 3. fog project Rce3.1. ssh绕过限制 4. NFS no_root_squash5. bash运行不了怎么办 靶机链接 https://hackmyvm.eu/machines/machine.ph…...
redis使用注意哪些事项
1. 数据类型选择: • Redis支持多种数据类型,如字符串(String)、哈希(Hash)、列表(List)、集合(Set)、有序集合(Sorted Set)等。在选择…...
步进电机位置速度双环控制实现
步进电机位置速度双环控制实现 野火stm32电机教学 提高部分-第11讲 步进电机位置速度双环控制实现(1)_哔哩哔哩_bilibili PID模型 位置环作为外环,速度环作为内环。设定目标位置和实际转轴位置的位置偏差,经过位置PID获得位置期望,然后讲位置期望(位置变化反映了转轴的速…...
优化程序中的数据:从数组到代数
前言 我们往往都希望优化我们的程序,使之达到一个更好的效果,程序优化的一个重点就是速度,加快速度的一个好办法就是使用并行技术,但是,并行时我们要考虑必须串行执行的任务,也就是有依赖关系的任务&#…...
【电商搜索】CRM: 具有可控条件的检索模型
【电商搜索】CRM: 具有可控条件的检索模型 目录 文章目录 【电商搜索】CRM: 具有可控条件的检索模型目录文章信息摘要研究背景问题与挑战如何解决核心创新点算法模型实验效果(包含重要数据与结论)相关工作后续优化方向 后记 https://arxiv.org/pdf/2412.…...
使用 ffmpeg 拼接合并视频文件
按顺序拼接多个视频文件 1、创建文件清单 创建一个文本文件 filelist.txt,列出所有要合并的视频文件。 格式如下: file path/to/video1.mp4 file path/to/video2.mp4 file path/to/video3.mp42、合并文件 下载FFmpeg,然后使用FFmpeg进行…...
【信号滤波 (上)】傅里叶变换和滤波算法去除ADC采样中的噪声(Matlab/C++)
目录 一、ADC采样的噪声简介1.1 常见的ADC噪声来源 二、信号的时域到频域转换2.1 傅里叶变换巧记傅里叶变换 三、傅里叶变换和滤波算法工程实现3.1 使用Matlab计算信号时域到频域的变换3.2 使用Matlab去除特定频点噪声寻找峰值算噪声频率构建陷波滤波器滤除噪声频点陷波滤波器与…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...
