【电商搜索】CRM: 具有可控条件的检索模型
【电商搜索】CRM: 具有可控条件的检索模型
目录
文章目录
- 【电商搜索】CRM: 具有可控条件的检索模型
- 目录
- 文章信息
- 摘要
- 研究背景
- 问题与挑战
- 如何解决
- 核心创新点
- 算法模型
- 实验效果(包含重要数据与结论)
- 相关工作
- 后续优化方向
- 后记
https://arxiv.org/pdf/2412.13844
文章信息
CRM: 具有可控条件的检索模型
https://arxiv.org/pdf/2412.13844
摘要
本文提出了一种新型的检索模型——可控检索模型(CRM),旨在通过将回归信息作为条件特征整合到双塔检索范式中,增强检索阶段与排名阶段之间的一致性,并提升检索模型的能力。通过实际的A/B测试验证了CRM的有效性,并展示了其在快手短视频推荐系统中的成功部署,该系统服务于超过4亿用户。
研究背景
推荐系统(RecSys)旨在连接用户与相关项目,同时满足平台的业务目标。典型的工业推荐系统分为两个主要阶段:检索和排名。检索阶段的目标是在数百万项目中搜索出符合用户兴趣的数百个候选项;排名阶段的目标是基于每个候选项的多个目标估计来选择最佳的十几个项目。与排名模型相比,检索模型在推理过程中缺乏候选项信息,因此通常只通过分类目标(例如点击率)进行训练,未能整合回归目标(例如预期观看时间),这限制了检索的有效性。
问题与挑战
如何在检索模型中引入回归目标是一个挑战,因为回归目标(例如预期观看时间)需要知道相应的项目才能确定。这种现象导致了检索和排名阶段之间的一致性问题,并限制了推荐系统链的性能。
如何解决
本文提出的CRM模型通过将回归信息作为额外的条件来指导模型,使得同时利用分类和回归信号成为可能。具体来说,在训练期间,将回归条件作为特征纳入用户塔中,以生成定向的用户表示。在在线推理期间,策略性地设置条件以指导检索过程,以符合我们的平台目标。
核心创新点
- 提出了一种新的设计检索模型的范式,通过将回归信息作为条件,增强了检索和排名阶段之间的一致性,为推荐系统的进步提供了启示。
- 引入了两种简单但有效的方法来实现CRM:一种涉及改进双塔架构,另一种涉及序列建模,为其他采用CRM的人提供了参考。
- 在快手最大的短视频推荐场景中验证了选择条件的新而有效的策略。
算法模型
CRM模型有两种实现方式:基于DNN的双塔范式和基于Transformer的范式。基于DNN的模型通过直接输入观察到的下一个视频的观看时间作为条件到用户塔中,允许模型学习观看时间和目标视频的联合分布。基于Transformer的模型则利用序列建模的优势,将用户的交互序列形成RL(强化学习)序列风格,以优化CRM模型。
实验效果(包含重要数据与结论)
在线实验在快手的短视频推荐场景中进行,该场景包括超过4亿用户和每天500亿日志。实验结果表明,CRM模型在多个关键指标上取得了改进,例如视频观看时间、总应用使用时间和用户互动等。此外,CRM在平均每次视频观看时间的关键指标上表现最佳,显著优于所有其他检索模型。
相关工作
本文回顾了双塔检索工作流程和基于RL的决策变换器序列建模。双塔检索工作流程旨在利用用户/项目特征来模拟用户偏好和项目属性,以预测用户可能与之交互的下一个视频。决策变换器(DT)是序列建模的先驱工作,旨在根据过去的奖励和状态序列直接进行动作决策。
后续优化方向
未来的工作将探索更多可以作为条件的目标,更有效的条件指定策略,并将这种方法扩展到推荐系统以外的领域。
后记
如果您对我的博客内容感兴趣,欢迎三连击 ( 点赞、收藏和关注 )和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术。
相关文章:

【电商搜索】CRM: 具有可控条件的检索模型
【电商搜索】CRM: 具有可控条件的检索模型 目录 文章目录 【电商搜索】CRM: 具有可控条件的检索模型目录文章信息摘要研究背景问题与挑战如何解决核心创新点算法模型实验效果(包含重要数据与结论)相关工作后续优化方向 后记 https://arxiv.org/pdf/2412.…...
使用 ffmpeg 拼接合并视频文件
按顺序拼接多个视频文件 1、创建文件清单 创建一个文本文件 filelist.txt,列出所有要合并的视频文件。 格式如下: file path/to/video1.mp4 file path/to/video2.mp4 file path/to/video3.mp42、合并文件 下载FFmpeg,然后使用FFmpeg进行…...

【信号滤波 (上)】傅里叶变换和滤波算法去除ADC采样中的噪声(Matlab/C++)
目录 一、ADC采样的噪声简介1.1 常见的ADC噪声来源 二、信号的时域到频域转换2.1 傅里叶变换巧记傅里叶变换 三、傅里叶变换和滤波算法工程实现3.1 使用Matlab计算信号时域到频域的变换3.2 使用Matlab去除特定频点噪声寻找峰值算噪声频率构建陷波滤波器滤除噪声频点陷波滤波器与…...

Idea内,光标显示问题
键盘误触导致光标显示为白色块 解决方式 任选其一 键盘敲击 Ins 键(既 insert 键)Shift 0(数字零)...

回顾 python3中字符串
一. 简介 前面学习了 python3中的字符串, 本文回顾一下 python3中的字符串。 二. python3中的字符串 1. 创建字符串 字符串是 python中最常用的数据类型。我们可以使用引号( 或者 " )来创建字符串。 创建字符串很简单,…...
代码随想录day23 | leetcode 39.组合总和 40.组合总和II 131.分割回文串
39.组合总和 Java class Solution { List<List<Integer>> result new ArrayList<>();LinkedList<Integer> path new LinkedList<>();public List<List<Integer>> combinationSum(int[] candidates, int target) {Arrays.sor…...
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
if语句处理多个分支时需要用if-else if结构,分支越多,嵌套的if语句层就越多,程序不但庞大、复杂,理解起来也比较困难。在C编程中,针对有些问题除了使用if-else if结构之外,还有switch语句也可以实现&#x…...

R机器学习:决策树算法的理解与实操
今天继续给大家介绍决策树算法,决策树本身是一种非常简单直观的机器学习算法,用于做分类或回归任务。它就像我们平常做决定时的过程,通过逐步排除可能的选项,最终得出结论。 A decision tree is a flowchart-like structure used …...

解锁高效学习之道:从认知升级到实践突破
目录 学习之困:探寻低效的根源 (一)迷茫之境:目标缺失的困扰 (二)表象之迷:浅尝辄止的学习 (三)行动之阻:执行力的短板 认知重塑:明晰学习的本…...
2024年12月CCF-GESP编程能力等级认证Python编程三级真题解析
本文收录于专栏《Python等级认证CCF-GESP真题解析》,专栏总目录:点这里,订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 2024年10月8日,诺贝尔物理学奖“意外地”颁给了两位计算机科学家约翰霍普菲尔德(John J. Hopfield)和杰弗里辛顿(Geof…...
.NET Core 中使用 C# 获取Windows 和 Linux 环境兼容路径合并
在 .NET Core 中使用 C# 处理路径合并并确保在 Windows 和 Linux 环境中都能正常工作,可以使用 System.IO.Path 和 System.IO.Path.Combine 方法。它们是跨平台的,能够根据操作系统自动处理路径分隔符。可以通过 System.Runtime.InteropServices.Runtime…...

【SH】Ubuntu Server 24服务器搭建MySQL数据库研发笔记
文章目录 搭建服务器在线安装1. 更新软件包列表2. 安装MySQL3. 检查MySQL状态4. 修改密码5. 新增用户6. 设置局域网访问 离线安装下载安装包 常用命令参考文档在线安装日志 搭建服务器 作者羊大侠搭建的是 Ubuntu Server 24.04 LTS 服务器环境 搭建参考文档:【SH】…...

编译原理复习---正则表达式+有穷自动机
适用于电子科技大学编译原理期末考试复习。 1. 正则表达式 正则表达式(Regular Expression,简称regex或regexp)是一种用于描述、匹配和操作文本模式的强大工具。它由一系列字符和特殊符号组成,这些字符和符号定义了一种搜索模式…...

知识图谱+RAG学习
GraphRAG(Graph-based Retrieval-Augmented Generation)是微软在2024年推出的一项开源技术,旨在通过结合知识图谱和检索增强生成(RAG)方法,为大型语言模型(LLM)的数据处理提供全新解…...

消息队列技术的发展历史
消息队列技术的演进历程宛如一幅波澜壮阔的科技画卷,历经多个标志性阶段,各阶段紧密贴合不同的技术需求与市场风向,下面为您详细道来。 第一阶段:消息中间件的起源(1970 年代末期 - 1980 年代中期) 在计算…...

每天40分玩转Django:Django部署
Django部署 一、今日学习内容概述 学习模块重要程度主要内容生产环境配置⭐⭐⭐⭐⭐settings配置、环境变量WSGI服务器⭐⭐⭐⭐⭐Gunicorn配置、性能优化Nginx配置⭐⭐⭐⭐反向代理、静态文件安全设置⭐⭐⭐⭐⭐SSL证书、安全选项 二、生产环境配置 2.1 项目结构调整 mypr…...

搭建Elastic search群集
一、实验环境 二、实验步骤 Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎Elasticsearch目录文件: /etc/elasticsearch/elasticsearch.yml#配置文件 /etc/elasticsearch/jvm.options#java虚拟机 /etc/init.d/elasticsearch#服务启动脚本 /e…...

解析 Ingress-Nginx 故障:排查思路与方法
文章目录 一、什么是Ingress-Nginx二、故障排除1.1Ingress-Controller日志和事件检查 Ingress 资源事件检查 Nginx 配置检查使用的服务是否存在调试日志 1.2对 Kubernetes API 服务器的认证服务认证服务账户Kube-Config 1.3使用GDB和Nginx1.4在 Nginx 4.2.5 或其他版本…...

2024 楚慧杯 re wp
go_bytes 附件拖入ida 输入长度为0x28,每两位字符的4bit拼接 与一个常量值经过运算后的值进行异或,并且判断是否相等 脚本 bouquet 附件拖入ida。简单去一下花 构建了一个二叉树,然后递归调用函数 重新排列一下再层序遍历读出即可 zistel 附件…...

【物联网技术与应用】实验10:蜂鸣器实验
实验10 蜂鸣器实验 【实验介绍】 蜂鸣器是音频信号装置。蜂鸣器可分为有源蜂鸣器和无源蜂鸣器。 【实验组件】 ● Arduino Uno主板* 1 ● USB数据线* 1 ● 有源蜂鸣器* 1 ● 无源蜂鸣器* 1 ● 面包板* 1 ● 9V方型电池* 1 ● 跳线若干 【实验原理】 如图所示&#x…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...

图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...