当前位置: 首页 > news >正文

大模型(LLM)提示工程(Prompt Engineering)初识

大模型提示工程(Prompt Engineering)是指设计和优化给定任务的输入提示,以便从大型语言模型(如GPT-4、GPT-3等)中获得最佳输出。其核心目标是通过合理设计输入内容(提示词或提示结构),引导模型产生符合预期的响应。大模型提示工程不仅是一个技术问题,还需要一定的创意和对模型行为的理解。

下面是一个详细的解释,结合具体的使用示例来说明如何进行大模型提示工程。

1. 基础概念

大模型提示工程的核心概念是通过设计输入(prompt),让语言模型能够理解并生成目标输出。通过调整提示的语法、上下文以及细节层次,可以显著提高模型输出的质量和相关性。

2. 简单提示设计

最基础的提示设计就是给定一个清晰明确的问题或指令。下面是一个简单的示例:

示例:

提示(Prompt): “请列举五个经典的Web开发框架,并简要描述每个框架的特点。”

期望输出

1. React: 一个由Facebook开发的用于构建用户界面的JavaScript库,特点是虚拟DOM和组件化开发。
2. Angular: 由Google维护的前端框架,特点是双向数据绑定和依赖注入。
3. Vue.js: 轻量级的前端框架,注重渐进式开发和易用性,具有响应式数据绑定。
4. Django: 一个高效的Python框架,特点是快速开发、内建ORM和强大的管理界面。
5. Flask: 一个小巧的Python框架,适用于构建轻量级的Web应用,灵活性高且易于扩展。

这个例子展示了一个直接的问题类型提示,模型理解了问题并作出详细的回答。

3. 高级提示设计

当任务复杂时,提示需要包含更多的细节和上下文信息。例如,开发人员可能会给模型提供结构化的提示,要求模型遵循一定的格式或约定。

示例:

提示(Prompt):
"我正在设计一个教育类Web应用。请推荐五个适用于Web开发的框架,并且按照以下要求列出每个框架:

  1. 框架名称
  2. 特点(简要描述)
  3. 适用场景(例如,适用于单页应用、企业级应用等)
  4. 优缺点分析"

期望输出

1. React  - 特点:基于组件的开发模型,虚拟DOM技术,支持单向数据流。  - 适用场景:单页应用(SPA)、动态交互式UI。  - 优缺点分析:优点是性能高、生态系统丰富;缺点是学习曲线陡峭,过于依赖JavaScript。2. Angular  - 特点:一个全栈框架,包含内置的路由、表单管理、HTTP客户端等功能。  - 适用场景:企业级应用、复杂应用,特别是需要跨多个平台的情况。  - 优缺点分析:优点是功能全面,适合大规模项目;缺点是学习曲线较陡,体积较大。3. Vue.js  - 特点:渐进式框架,支持响应式数据绑定,易于集成和使用。  - 适用场景:适合中小型应用,尤其适合需要快速开发和灵活扩展的场景。  - 优缺点分析:优点是上手快、易于调试;缺点是相较于React和Angular生态不够成熟。4. Django  - 特点:Python开发框架,注重快速开发,具有内置的ORM和管理后台。  - 适用场景:Web开发,特别是需要数据库集成的后台管理系统。  - 优缺点分析:优点是开发效率高,安全性强;缺点是灵活性稍差,可能不适合轻量级应用。5. Flask  - 特点:轻量级Python框架,提供基础的Web功能,适用于构建微服务。  - 适用场景:API服务、轻量级Web应用、微服务架构。  - 优缺点分析:优点是灵活、易于扩展;缺点是没有内建的工具和功能,开发者需要更多的自定义。

这个提示给了模型更明确的结构和要求,从而帮助模型生成符合格式的输出。

4. 使用模板和上下文

有时,提示的结构不仅仅是一个简单的问题,而是带有更多上下文或者是多步骤的任务。例如,生成一个SQL查询,或者根据历史对话生成一个更复杂的答复。

示例:

提示(Prompt):
"假设你是一个数据库管理员,下面是一个包含多个表格的数据库。请根据给定的表格结构编写SQL查询,找出过去30天内销售总额最高的10个客户。

表格:

  1. customers(客户表): customer_id (int), name (varchar)
  2. orders(订单表): order_id (int), customer_id (int), order_date (date), total_amount (float)

期望输出

SELECT c.name, SUM(o.total_amount) AS total_sales
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
WHERE o.order_date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
ORDER BY total_sales DESC
LIMIT 10;

在这个示例中,提示中包含了任务的背景信息(表格结构、需求等),并要求模型生成一个具体的SQL查询。

5. 动态提示生成与调整

在实际应用中,开发人员需要根据不同的任务动态调整提示。尤其是在交互式对话系统或者生成式任务中,提示工程可以根据模型的反馈进行进一步优化。

示例:

假设在一个AI对话系统中,用户想要了解某个技术的详细信息。开发人员可以根据用户的请求调整模型的提示:

初始提示(Prompt): “请简要介绍Vue.js框架的主要特点。”

用户要求更详细: 用户可能后续会要求更详细的技术细节。此时,开发人员可以动态修改提示,使其更具深度。

修改后的提示:
“请详细介绍Vue.js框架的工作原理,特别是响应式数据绑定和组件生命周期。”

6. 常见提示工程技巧

  • 明确目标:明确你想从模型中得到什么样的输出。例如,如果是生成代码,确保提示包含结构和要求;如果是回答问题,确保问题尽可能清晰。
  • 多轮互动:对于复杂问题,分步提示有时比一次性提示更有效。
  • 具体要求:越具体的要求,模型生成的回答越符合预期。不要仅仅要求“列出框架”,而是要求“列出框架并给出优缺点”。
  • 引导式提示:给出框架或模板,帮助模型产生结构化输出。

7. 总结

大模型提示工程是一个技术与创意结合的过程,开发人员需要理解模型的工作方式,并通过精心设计的提示来引导模型生成更符合需求的输出。无论是简单的任务提示,还是复杂的多步骤问题,提示的设计和优化都在提高模型效能方面扮演着至关重要的角色。

相关文章:

大模型(LLM)提示工程(Prompt Engineering)初识

大模型提示工程(Prompt Engineering)是指设计和优化给定任务的输入提示,以便从大型语言模型(如GPT-4、GPT-3等)中获得最佳输出。其核心目标是通过合理设计输入内容(提示词或提示结构)&#xff0…...

大数据-256 离线数仓 - Atlas 数据仓库元数据管理 正式安装 启动服务访问 Hive血缘关系导入

点一下关注吧!!!非常感谢!!持续更新!!! Java篇开始了! 目前开始更新 MyBatis,一起深入浅出! 目前已经更新到了: Hadoop&#xff0…...

gaussian_splatting 构建submodules的diff-gaussian-rasterization失败报错

c:\program files\nvidia gpu computing toolkit\cuda\v11.8\include\crt/host_config.h(231): fatal error C1083: 无法打开包括文件: “crtdefs.h”: No such file or directory 配置: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin\nvcc.profil…...

template<typename Func, typename = void> 在类模板中的应用

1、基础语法 在 C 中&#xff0c;template<typename Func, typename void> 这一模板声明不仅仅限于函数模板&#xff0c;它在类模板中同样具有强大的应用。结合 SFINAE&#xff08;Substitution Failure Is Not An Error&#xff09;和 类型特征&#xff08;type trait…...

如何确保数据大屏的交互设计符合用户需求?(附实践资料下载)

确保数据大屏的交互设计符合用户需求是一个多步骤的过程&#xff0c;涉及到用户研究、设计原则、原型测试和持续迭代。以下是一些关键步骤和策略&#xff1a; 用户研究&#xff1a; 目标用户识别&#xff1a;明确大屏的目标用户群体&#xff0c;包括他们的背景、角色和需求。用…...

Linux使用教程及常用命令大全

Linux是一个开源的操作系统&#xff0c;具有高度的可定制性和可扩展性。以下是一份 Linux 使用教程及常用命令的总结&#xff0c;帮助你快速入门 Linux。 1. 安装 Linux 下载 Linux 安装程序&#xff08;可参考我的这篇文章&#xff09;&#xff1a;VMware虚拟机超详细安装Linu…...

基于openlayers 开发vue地图组件

先看效果 主要功能如下&#xff1a; 测量图源更换放大缩小地图添加点hover点数据切换到地图位置&#xff1b;也设定层级2D3D切换&#xff0c;3D为cesium开发&#xff0c;技术交流可以加V&#xff1a;bloxed 地图工具做了插槽&#xff0c;分为toolbar&#xff08;左上角工具…...

音视频入门基础:AAC专题(13)——FFmpeg源码中,获取ADTS格式的AAC裸流音频信息的实现

音视频入门基础&#xff1a;AAC专题系列文章&#xff1a; 音视频入门基础&#xff1a;AAC专题&#xff08;1&#xff09;——AAC官方文档下载 音视频入门基础&#xff1a;AAC专题&#xff08;2&#xff09;——使用FFmpeg命令生成AAC裸流文件 音视频入门基础&#xff1a;AAC…...

【C++】B2069 求分数序列和题目解析与优化详解

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述输入格式输出格式输入输出样例输入&#xff1a;输出&#xff1a; &#x1f4af;解题思路分析题目解题步骤 &#x1f4af;代码实现我的代码实现实现特点 老师的代码…...

4.FPGA如何实现设计

在前面分别引入了&#xff0c;LUT的知识&#xff0c;全局时钟网络&#xff0c;以及FPGA内部的资源。 LUT的知识&#xff1a; 在FPGA设计中实现的逻辑运算在不借用其他的硬核的基础上都是在LUT中通过查表的方式进行完成的&#xff0c;比如实现的c a & b;就是将a&b的所…...

SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测

SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测&#xff08;多输入单输出&#xff09; 目录 SO-CNN-LSTM-MATT蛇群算法优化注意力机制深度学习多特征分类预测&#xff08;多输入单输出&#xff09;分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matl…...

大模型-Ollama使用相关的笔记

大模型-Ollama使用相关的笔记 解决Ollama外网访问问题&#xff08;配置ollama跨域访问&#xff09;Postman请求样例 解决Ollama外网访问问题&#xff08;配置ollama跨域访问&#xff09; 安装Ollama完毕后&#xff0c; /etc/systemd/system/ollama.service进行如下修改&#…...

OpenCV计算机视觉 02 图片修改 图像运算 边缘填充 阈值处理

目录 图片修改&#xff08;打码、组合、缩放&#xff09; 图像运算 边缘填充 ​阈值处理 上一篇文章&#xff1a; OpenCV计算机视觉 01 图像与视频的读取操作&颜色通道 图片修改&#xff08;打码、组合、缩放&#xff09; # 图片打码 import numpy as np a cv2.imre…...

langchain使用FewShotPromptTemplate出现KeyError的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

tryhackme-Cyber Security 101-Linux Shells(linux命令框)

目的&#xff1a;了解脚本和不同类型的 Linux shell。 任务1&#xff1a;Introduction to Linux Shells&#xff08;Linux Shell 简介&#xff09; 作为操作系统的常规用户&#xff0c;我们都广泛使用图形用户界面 &#xff08;GUI&#xff09; 来执行大多数操作。只需点击几…...

亚远景-ISO 21434标准涵盖了哪些方面?

ISO 21434标准《道路车辆—网络安全工程》全面涵盖了汽车网络安全领域&#xff0c;其目的是确保汽车电子系统在整个产品生命周期中的网络安全性能。具体来说&#xff0c;该标准包括以下几个方面&#xff1a; 1. 术语和定义 &#xff1a;提供汽车网络安全相关的术语、概念和定义…...

第3章 集合与关系

2024年12月24日一稿 2024年12月26日二稿 &#x1f430;3.1 集合的概念和表示法 &#x1f998;3.1.1 集合的表示 &#x1f998;3.1.2 基本概念 &#x1f430;3.2 集合的运算 &#x1f998;3.2.1 集合的基本运算 &#x1f998;3.2.2 有穷计数集 &#x1f998;3.2.3 广义交和广义…...

【vmware】|设置共享文件夹

目的: 虚拟机中设置共享文件夹&#xff0c;本地物理机中可以搜到该共享文件夹 1、虚拟机&#xff1a; 设置共享文件夹 右键属性-共享页码进行下列设置 点击网络和共享中心&#xff0c;检查下列选项 二、在本地物理机中启用网络发现&#xff1a; 此时&#xff0c;刷新网络…...

Log4j1.27配置日志输出级别不起效

起因&#xff1a;构建独立版本debezuim使用时&#xff0c;日志一直打印debug信息。 原因&#xff1a;包冲突问题&#xff0c;进行排包操作。 参考log4j日志级别配置完成后不生效 系统一直打印debug日志_log4j不起作用-CSDN博客 1、application.properties logging.configc…...

计算机图形学知识点汇总

一、计算机图形学定义与内容 1.图形 图形分为“图”和“形”两部分。 其中&#xff0c;“形”指形体或形状&#xff0c;存在于客观世界和虚拟世界&#xff0c;它的本质是“表示”&#xff1b;而图则是包含几何信息与属性信息的点、线等基本图元构成的画面&#xff0c;用于表达…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...