哪些框架、软件、中间件使用了netty? 哪些中间件、软件底层使用了epoll?
使用 Netty 的软件、中间件和框架
Netty 是一个异步事件驱动的网络应用框架,广泛应用于构建高性能的网络应用程序。以下是一些使用了 Netty 的知名软件、中间件和框架:
1. Elasticsearch
- 描述:Elasticsearch 是一个分布式的搜索和分析引擎,适用于海量数据的实时搜索与分析。
- 应用:Elasticsearch 使用 Netty 来处理客户端连接和通信,确保高并发场景下的高效性能。
2. Apache Kafka
- 描述:Kafka 是一个分布式流处理平台,用于构建实时数据管道和流应用程序。
- 应用:Kafka 的网络层基于 Netty 构建,利用其高效的 I/O 多路复用机制来管理大量客户端连接。
3. gRPC
- 描述:gRPC 是一个高性能、开源、通用的 RPC 框架,支持多种语言。
- 应用:gRPC 在某些实现中使用 Netty 作为底层传输层,特别是在 Java 实现中,以提供非阻塞的 I/O 操作和高并发支持。
4. Redisson
- 描述:Redisson 是 Redis 的 Java 客户端,提供了丰富的分布式对象和服务。
- 应用:Redisson 内部使用 Netty 来实现与 Redis 服务器之间的高效通信。
5. Quarkus
- 描述:Quarkus 是一个为 Java 开发者打造的 Kubernetes 原生框架,旨在提供极快的启动时间和低资源消耗。
- 应用:Quarkus 使用 Netty 作为其默认的 HTTP 服务器,以确保高性能和可扩展性。
6. Spring Boot (部分项目)
- 描述:虽然 Spring Boot 默认使用 Tomcat 或 Jetty 作为嵌入式服务器,但一些项目选择使用 Netty 作为替代方案,特别是对于需要更高性能的应用。
使用 epoll 的中间件和软件
epoll 是 Linux 系统提供的高效 I/O 多路复用机制,被许多高性能网络服务器和中间件所采用。以下是使用 epoll 的一些知名中间件和软件:
1. Nginx
- 描述:Nginx 是一个高性能的 HTTP 和反向代理服务器。
- 应用:Nginx 使用
epoll(在 Linux 上)来实现高效的事件驱动架构,能够同时处理成千上万的并发连接。
2. Redis
- 描述:Redis 是一个开源的内存数据结构存储系统。
- 应用:Redis 使用
epoll来管理客户端连接,确保它可以快速响应大量的读写请求。
3. Memcached
- 描述:Memcached 是一种分布式内存对象缓存系统。
- 应用:Memcached 利用
epoll来优化对大量并发连接的处理,提高缓存命中率和服务效率。
4. HAProxy
- 描述:HAProxy 是一款提供高可用性、负载均衡以及基于 TCP 和 HTTP 应用的代理软件。
- 应用:HAProxy 使用
epoll来高效地管理和调度大量连接,保证了其作为负载均衡器的卓越性能。
5. Lighttpd
- 描述:Lighttpd 是一个轻量级的 Web 服务器。
- 应用:Lighttpd 采用
epoll来处理多个并发连接,使其能够在资源有限的情况下仍然保持较高的吞吐量。
6. Mosquitto
- 描述:Mosquitto 是一个实现了 MQTT 协议的消息代理。
- 应用:Mosquitto 使用
epoll来有效地管理来自众多客户端的连接,确保消息传递的及时性和可靠性。
7. Node.js (Linux 环境下)
- 描述:Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。
- 应用:尽管 Node.js 本身是跨平台的,但在 Linux 环境下,它会利用
epoll来提升 I/O 操作的性能,尤其是在处理大量并发连接时。
8. Apache Kafka (网络层)
- 描述:如前所述,Kafka 的网络层基于 Netty 构建,而 Netty 在 Linux 上默认使用
epoll来管理 I/O 操作。
总结
Netty 和 epoll 分别在不同的层次上提升了网络应用程序的性能和可扩展性。Netty 提供了一个高层次的抽象,简化了开发者编写高性能网络应用程序的过程;而 epoll 则是在操作系统级别提供了高效的 I/O 多路复用机制。两者结合使用,可以在构建高性能、可扩展的分布式系统时发挥重要作用。
相关文章:
哪些框架、软件、中间件使用了netty? 哪些中间件、软件底层使用了epoll?
使用 Netty 的软件、中间件和框架 Netty 是一个异步事件驱动的网络应用框架,广泛应用于构建高性能的网络应用程序。以下是一些使用了 Netty 的知名软件、中间件和框架: 1. Elasticsearch 描述:Elasticsearch 是一个分布式的搜索和分析引擎…...
AI 智能助手对话系统
一个基于 React 和 Tailwind CSS 构建的现代化 AI 对话系统,提供流畅的用户体验和丰富的交互功能。 项目链接:即将开放… 功能特点 🤖 智能对话:支持与 AI 助手实时对话,流式输出回答📁 文件处理ÿ…...
2024年秋词法分析作业(满分25分)
【问题描述】 请根据给定的文法设计并实现词法分析程序,从源程序中识别出单词,记录其单词类别和单词值,输入输出及处理要求如下: (1)数据结构和与语法分析程序的接口请自行定义;类别码需按下表格…...
Docker镜像瘦身:从1.43G到22.4MB
Docker镜像瘦身:从1.43G到22.4MB 背景1、创建项目2、构建第一个镜像3、修改基础镜像4、多级构建5、使用Nginx背景 在使用 Docker 时,镜像大小至关重要。我们从 create-react-app (https://reactjs.org/docs/create-a-new-react-app.html)获得的样板项目通常都超过 1.43 GB…...
前端加解密对抗encrypt-labs
前言 项目地址:https://github.com/SwagXz/encrypt-labs 作者:SwagXz 现在日子越来越不好过了,无论攻防、企业src还是渗透项目,总能看到大量的存在加密的网站,XZ师傅的前端加密靶场还是很值得做一做的,环…...
Android Notification 问题:Invalid notification (no valid small icon)
问题描述与处理策略 1、问题描述 java.lang.RuntimeException: Unable to start activity ComponentInfo{com.my.notifications/com.my.notifications.MainActivity}: java.lang.IllegalArgumentException: Invalid notification (no valid small icon): Notification(chan…...
Python爬虫教程——7个爬虫小案例(附源码)_爬虫实例
本文介绍了7个Python爬虫小案例,包括爬取豆瓣电影Top250、猫眼电影Top100、全国高校名单、中国天气网、当当网图书、糗事百科段子和新浪微博信息,帮助读者理解并实践Python爬虫基础知识。 包含编程资料、学习路线图、源代码、软件安装包等!【…...
Log4j2的Policies详解、SizeBasedTriggeringPolicy、TimeBasedTriggeringPolicy
文章目录 一、Policies二、SizeBasedTriggeringPolicy:基于文件大小的滚动策略2.1、文件达到指定大小就归档 三、TimeBasedTriggeringPolicy:基于时间间隔的滚动策略3.1、验证秒钟归档场景3.2、验证分钟场景3.3、验证小时场景 四、多策略组合使用五、扩展知识5.1、S…...
ES中查询中参数的解析
目录 query中参数match参数match_allmatch:匹配指定参数match_phrase query中其他的参数query_stringprefix前缀查询:wildcard通配符查询:range范围查询:fuzzy 查询: 组合查询bool参数mustmust_notshould条件 其他参数 query中参数 词条查询term:它仅匹配在给定字段…...
学习笔记:使用 pandas 和 Seaborn 绘制柱状图
学习笔记:使用 pandas 和 Seaborn 绘制柱状图 前言 今天在使用 pandas 对数据进行处理并在 Python 中绘制可视化图表时,遇到了一些关于字体设置和 Seaborn 主题覆盖的小问题。这里将学习到的方法和注意事项做个总结,以便之后的项目中可以快…...
【每日学点鸿蒙知识】placement设置top、组件携带自定义参数、主动隐藏输入框、Web设置字体、对话框设置全屏宽
1、popup组件placement设置top没有生效? 可以用offset属性将popup往下边偏移一下 来规避 2、组件携带自定义参数的接口是哪个? 参考链接:https://developer.huawei.com/consumer/cn/doc/harmonyos-references-V5/ts-universal-attributes-…...
后端开发-Maven
环境说明: windows系统:11版本 idea版本:2023.3.2 Maven 介绍 Apache Maven 是一个 Java 项目的构建管理和理解工具。Maven 使用一个项目对象模型(POM),通过一组构建规则和约定来管理项目的构建…...
自动化办公-合并多个excel
在日常的办公自动化工作中,尤其是处理大量数据时,合并多个 Excel 表格是一个常见且繁琐的任务。幸运的是,借助 Python 语言中的强大库,我们可以轻松地自动化这个过程。本文将带你了解如何使用 Python 来合并多个 Excel 表格&#…...
mavlink移植到单片机stm32f103c8t6,实现接收和发送数据
前言: 好久没更新博客了,这两个月真的是异常的忙,白天要忙着公司里的事,晚上还要忙着修改小论文,一点自己的时间都没有了,不过确确实实是学到了很多东西,对无人机的技术研究也更深了一些。不过好…...
小程序基础 —— 08 文件和目录结构
文件和目录结构 一个完整的小程序项目由两部分组成:主体文件、页面文件: 主体文件:全局文件,能够作用于整个小程序,影响小程序的每个页面,主体文件必须放到项目的根目录下; 主体文件由三部分组…...
FIR数字滤波器设计——窗函数设计法——滤波器的时域截断
与IIR数字滤波器的设计类似,设计FIR数字滤波器也需要事先给出理想滤波器频率响应 H ideal ( e j ω ) H_{\text{ideal}}(e^{j\omega}) Hideal(ejω),用实际的频率响应 H ( e j ω ) H(e^{j\omega}) H(ejω)去逼近 H ideal ( e j ω ) H_{\text{ideal}}…...
MySQLOCP考试过了,题库很稳,经验分享。
前几天,本人参加了Oracle认证 MySQLOCP工程师认证考试 ,先说下考这个证书的初衷: 1、首先本人是从事数据库运维的,今年开始单位逐步要求DBA持证上岗。 2、本人的工作是涉及数据库维护,对这块的内容比较熟悉ÿ…...
WPF 绘制过顶点的圆滑曲线 (样条,贝塞尔)
在一个WPF项目中要用到样条曲线,必须过顶点,圆滑后还不能太走样,捣鼓一番,发现里面颇有玄机,于是把我多方抄来改造的方法发出来,方便新手: 如上图,看代码吧: ----------…...
Kafka 幂等性与事务
文章目录 幂等性实现机制配置使用局限性 事务使用场景配置使用实现机制事务过程事务初始化事务开始事务提交事务取消事务消费 幂等性 Producer 无论向 Broker 发送多少次重复的数据,Broker 端只会持久化一条,保证数据不丢失且不重复。 实现机制 通过引…...
day2 Linux操作系统指令
思维导图 在家目录下创建目录文件,dir 1、dir下创建dir1和dir2 2、把当前目录下的所有文件拷贝到dir1中, 3、把当前目录下的所有脚本文件拷贝到dir2中 4、把dir2打包并压缩为dir2.tar.xz 5、再把dir2.tar.xz移动到dir1中 6、解压dir1中的压缩包 7、使用…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
