当前位置: 首页 > news >正文

数学期望和方差

数学期望(Mathematical Expectation)和方差(Variance)是概率论和统计学中两个非常重要的概念。下面将分别对这两个概念进行解释。

数学期望

数学期望是随机变量的平均值,它描述了随机变量的中心位置。对于离散随机变量 (X),其数学期望 (E(X)) 定义为:
[ E(X) = \sum_{i=1}^{\infty} x_i p_i ]
其中 (x_i) 是随机变量 (X) 的可能取值,(p_i) 是 (X) 取值 (x_i) 的概率。

对于连续随机变量 (X),其数学期望 (E(X)) 定义为:
[ E(X) = \int_{-\infty}^{\infty} x f(x) , dx ]
其中 (f(x)) 是随机变量 (X) 的概率密度函数。

方差

方差是衡量随机变量分散程度的指标,它描述了随机变量的值与其数学期望之间的偏离程度。对于离散随机变量 (X),其方差 (Var(X)) 定义为:
[ Var(X) = E[(X - E(X))^2] = \sum_{i=1}^{\infty} (x_i - E(X))^2 p_i ]

对于连续随机变量 (X),其方差 (Var(X)) 定义为:
[ Var(X) = E[(X - E(X))^2] = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) , dx ]

方差的平方根称为标准差(Standard Deviation),它与原随机变量具有相同的量纲,因此在实际应用中更直观。

例子

假设有一个离散随机变量 (X),其可能取值为 1, 2, 3,相应的概率为 0.2, 0.5, 0.3。那么 (X) 的数学期望和方差分别为:

数学期望:
[ E(X) = 1 \times 0.2 + 2 \times 0.5 + 3 \times 0.3 = 0.2 + 1 + 0.9 = 2.1 ]

方差:
[ Var(X) = (1 - 2.1)^2 \times 0.2 + (2 - 2.1)^2 \times 0.5 + (3 - 2.1)^2 \times 0.3 ]
[ = (-1.1)^2 \times 0.2 + (-0.1)^2 \times 0.5 + (0.9)^2 \times 0.3 ]
[ = 1.21 \times 0.2 + 0.01 \times 0.5 + 0.81 \times 0.3 ]
[ = 0.242 + 0.005 + 0.243 = 0.49 ]

标准差:
[ \sigma = \sqrt{Var(X)} = \sqrt{0.49} = 0.7 ]

因此,随机变量 (X) 的数学期望是 2.1,方差是 0.49,标准差是 0.7。

总结

数学期望和方差是描述随机变量特性的两个重要参数。数学期望表示随机变量的平均值,而方差表示随机变量的分散程度。在实际应用中,这两个参数对于理解数据的分布和进行统计分析非常有用。

相关文章:

数学期望和方差

数学期望(Mathematical Expectation)和方差(Variance)是概率论和统计学中两个非常重要的概念。下面将分别对这两个概念进行解释。 数学期望 数学期望是随机变量的平均值,它描述了随机变量的中心位置。对于离散随机变…...

【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据...本篇介绍Tensor RT 的优化流程。

【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍Tensor RT 的优化流程。 【面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据…本篇介绍Tensor RT 的优化流程。 文章目录 【面试AI算法题中的知识点】方向涉及:ML/D…...

BLDC无感控制的驱动逻辑

如何知道转子已经到达预定位置,因为我们只有知道了转子到达了预定位置之后才能进行换相,这样电机才能顺滑的运转。转子位置检测常用的有三种方式。 方式一:通过过零检测,三相相电压与电机中性点电压进行比较。过零检测的优点在于…...

BP神经网络的反向传播算法

BP神经网络(Backpropagation Neural Network)是一种常用的多层前馈神经网络,通过反向传播算法进行训练。反向传播算法的核心思想是通过计算损失函数对每个权重的偏导数,从而调整权重,使得网络的预测输出与真实输出之间…...

[实用指南]如何将视频从iPhone传输到iPad

概括 将视频从 iPhone 传输到 iPad 时遇到问题?您可能知道一种方法,但不知道如何操作。此外,您要传输的视频越大,完成任务就越困难。那么如何将视频从 iPhone 传输到 iPad,特别是当您需要发送大视频文件时&#xff1f…...

Linux Snipaste 截图闪屏/闪烁

防 csdn 不能看,Go to juejin Linux Snipaste 截图时窗口元素一闪一闪的无法正常使用。 解决此问题时系统环境为 Manjaro KDE6,不过我在其他发行版与 gnome 上也碰到了。 先放解决办法: # 启动 Snipaste 时去掉缩放参数 env -u QT_SCREEN_…...

【YOLOv5】源码(common.py)

该文件位于/models/common.py,提供了构建YOLOv5模型的各种基础模块,其中包含了常用的功能模块,如自动填充autopad函数、标准卷积层Conv、瓶颈层Bottleneck、C3、SPPF、Concat层等 参考笔记:【YOLOv3】 源码(common.py…...

Node 如何生成 RSA 公钥私钥对

一、引入crypto模块 crypto 为node 自带模块,无需安装 const crypto require(crypto);二、封装生成方法 async function generateRSAKeyPair() {return new Promise((resolve, reject) > {crypto.generateKeyPair(rsa, {modulusLength: 2048, // 密钥长度为 …...

瑞_Linux中部署配置Java服务并设置开机自启动

文章目录 背景Linux服务配置步骤并设置开机自启动附-Linux服务常用指令 🙊 前言:由于博主在工作时,需要将服务部署到 Linux 服务器上运行,每次通过指令启动服务非常麻烦,所以将 jar 包部署的服务设置开机自启动&#x…...

javaEE-多线程进阶-JUC的常见类

juc:指的是java.util.concurrent包,该包中加载了一些有关的多线程有关的类。 目录 一、Callable接口 FutureTask类 参考代码: 二、ReentrantLock 可重入锁 ReentrantLock和synchronized的区别: 1.ReentantLock还有一个方法&#xff1a…...

Flume拦截器的实现

Flume conf文件编写 vim file_to_kafka.conf#定义组件 a1.sources r1 a1.channels c1#配置source a1.sources.r1.type TAILDIR a1.sources.r1.filegroups f1 a1.sources.r1.filegroups.f1 /Users/zhangjin/model/project/realtime-flink/applog/log/app.* # 设置断点续传…...

Swift Combine 学习(四):操作符 Operator

Swift Combine 学习(一):Combine 初印象Swift Combine 学习(二):发布者 PublisherSwift Combine 学习(三):Subscription和 SubscriberSwift Combine 学习(四&…...

leetcode 173.二叉搜索树迭代器栈绝妙思路

以上算法题中一个比较好的实现思路就是利用栈来进行实现,以下方法三就是利用栈来进行实现的,思路很好,很简练。进行next的时候,先是一直拿到左边的子树,直到null为止,这一步比较好思考一点,下一…...

df.groupby([pd.Grouper(freq=‘1M‘, key=‘Date‘), ‘Buyer‘]).sum()

df.groupby([pd.Grouper(freq1M, keyDate), Buyer]).sum() 用于根据特定的时间频率和买家(Buyer)对 DataFrame 进行分组,然后计算每个分组的总和。下面是对这行代码的逐步解释: df.groupby([...]):这个操作会根据传入的…...

LLM - 使用 LLaMA-Factory 部署大模型 HTTP 多模态服务 (4)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/144881432 大模型的 HTTP 服务,通过网络接口,提供 AI 模型功能的服务,允许通过发送 HTTP 请求,交互…...

icp备案网站个人备案与企业备案的区别

个人备案和企业备案是在进行ICP备案时需要考虑的两种不同情况。个人备案是指个人拥有的网站进行备案,而企业备案则是指企业或组织名下的网站进行备案。这两者在备案过程中有一些明显的区别。 首先,个人备案相对来说流程较为简单。个人备案只需要提供个人…...

如何不修改模型参数来强化大语言模型 (LLM) 能力?

前言 如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。 大语言模型 (Large Language Model, LLM, e.g. ChatGPT) 的参数量少则几十亿,多则上千亿,对其的训…...

AF3 AtomAttentionEncoder类的init_pair_repr方法解读

AlphaFold3 的 AtomAttentionEncoder 类中,init_pair_repr 方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。 init_pair_repr源代码: def init_pair_repr(…...

DDoS攻击防御方案大全

1. 引言 随着互联网的迅猛发展,DDoS(分布式拒绝服务)攻击成为了网络安全领域中最常见且危害严重的攻击方式之一。DDoS攻击通过向目标网络或服务发送大量流量,导致服务器过载,最终使其无法响应合法用户的请求。本文将深…...

Vue中常用指令

一、内容渲染指令 1.v-text:操作纯文本,用于更新标签包含的文本,但是使用不灵活,无法拼接字符串,会覆盖文本,可以简写为{{}},{{}}支持逻辑运算。 用法示例: //把name对应的值渲染到…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...