分布式主键ID生成方式-snowflake雪花算法
这里写自定义目录标题
- 一、业务场景
- 二、技术选型
- 1、UUID方案
- 2、Leaf方案-美团(基于数据库自增id)
- 3、Snowflake雪花算法方案
- 总结
一、业务场景
大量的业务数据需要保存到数据库中,原来的单库单表的方式扛不住大数据量、高并发,需要分库分表;这样原来的数据库自增id作为主键就不能满足业务需求,需要有一个在分库分表中的唯一标识id作为主键,这个id需要有如下要求:
- 全局唯一性
- 趋势递增:在MySQL的InnoDB中使用的是聚焦索引,用的是B-tree的数据结构来存储索引数据,所以要尽量选用有序的主键来保证写入性能
- 信息安全:不能通过主键看出业务信息
二、技术选型
1、UUID方案
uuid是32位数的16进制数字所构成,以连字号分为五段,总共有 36个字符(即三十二个英数字母和四个连字号),550e8400-e29b-41d4-a716-446655440000,所以理论上uuid的总数有16^32,基本用不完。
优点: 性能非常强,本地内存生成。
缺点: 36个字符串存储,太长了,而且生成的id是无序的,MySQL要求主键越短越好,同时要有序,保证索引的写入性能。
2、Leaf方案-美团(基于数据库自增id)
- 在数据库中设计一张表用于生成自增id
| biz_tag | maxId | step
| user_tab | 2000 | 1000
| home_tab | 3000 | 2000
biz_tag
是业务表名用来区分业务,maxId
是目前所被分配的id号段的最大值,step
是每次分配的长度。 - Leaf微服务从数据库中一次取step个号码端,比如step为1000,则每次取1000个到Leaf服务内存中,用于应用层调用接口获取主键id,每调一次加一,内存中的1000个用完后,Leaf再去数据库取一次号码段(取的时候maxId也会相应更新)。
- 这样Leaf服务和数据库交互频率就大大减少,性能瓶颈就不在数据库,而在于Leaf微服务,而Leaf服务是无状态的,因此可以根据实际需求横向扩展,可以部署多个Leaf微服务用于获取主键id
优点:
- 扩展性好,可以随着业务的发展线性扩展多个Leaf服务
- 生成的主键id是趋势递增的8byte的64位数,符合数据库存储的主键id要求
- 容灾性好,即使DB宕机一会,Leaf服务内存中缓存的号码段可以支撑一段时间等待DB恢复
- maxId可以自定义大小,方便其他业务ID迁移到Leaf服务。
缺点: - ID不够随机,安全性不够
- TP999性能波动大,当某一时刻,多个Leaf服务的号码段都使用到999最后一个时,同时调用数据库获取号码端,会造成偶尔的突刺,导致获取主键ID延迟。
- DB数据库长时间宕机会导致整个服务不可用。
优化:
争对TP999,可以采用提前获取号码段(双buffer)的方式,当Leaf内存中还剩下指定的号码时(eg:800),就提前获取下1000个号码段放到内存中,即Leaf服务内部有两个号段缓存区segment,这样当数据库调用延迟,需要等待时,Leaf服务还有号码段可以对外提供服务。
DB数据库可以采用一主两从的方式,或者用多机房,提高容灾性。
3、Snowflake雪花算法方案
Snowflake算法可以生成64位的ID,刚好可以用Long型存储,并且生成的ID有大致的顺序;它以划分命名空间的方式,讲64-bit位划分为4个部分:
0 - 41位时间戳 - 10位机器id - 12位序列号
- 第一位是符号位,不用。
- 第二部分是41位的时间戳,可以表示2^41个数,每个数代表毫秒(ms)。
- 第三部分是10位的机器id,即2^10=1024台机器,实际中用不到这么多机器,可以进一步细分,加上机房信息,或者业务信息。
- 第四部分是12位的自增序列,2^12=4096个数,即理论上1ms内一台机器支持4096个请求。
Java实现:
/*** twitter的snowflake算法 -- java实现* */
public class SnowFlake {/*** 每一部分占用的位数*/private final static long SEQUENCE_BIT = 12; //序列号占用的位数private final static long MACHINE_BIT = 5; //机器标识占用的位数private final static long DATACENTER_BIT = 5;//数据中心占用的位数/*** 每一部分的最大值*/private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);/*** 每一部分向左的位移*/private final static long MACHINE_LEFT = SEQUENCE_BIT;private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;private long datacenterId; //数据中心private long machineId; //机器标识private long sequence = 0L; //序列号private long lastStmp = -1L;//上一次时间戳public SnowFlake(long datacenterId, long machineId) {if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");}if (machineId > MAX_MACHINE_NUM || machineId < 0) {throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");}this.datacenterId = datacenterId;this.machineId = machineId;}/*** 产生下一个ID** @return*/public synchronized long nextId() {long currStmp = getNewstmp();if (currStmp < lastStmp) {// 时钟回拨问题怎么处理?throw new RuntimeException("Clock moved backwards. Refusing to generate id");}if (currStmp == lastStmp) {//相同毫秒内,序列号自增sequence = (sequence + 1) & MAX_SEQUENCE;//同一毫秒的序列数已经达到最大if (sequence == 0L) {currStmp = getNextMill();}} else {//不同毫秒内,序列号置为0sequence = 0L;}lastStmp = currStmp;return (currStmp << TIMESTMP_LEFT) //时间戳部分| (datacenterId << DATACENTER_LEFT) //数据中心部分| (machineId << MACHINE_LEFT) //机器标识部分| sequence; //序列号部分}private long getNextMill() {long mill = getNewstmp();while (mill <= lastStmp) {mill = getNewstmp();}return mill;}private long getNewstmp() {return System.currentTimeMillis();}public static void main(String[] args) {SnowFlake snowFlake = new SnowFlake(1, 1);for (int i = 0; i < (1 << 12); i++) {System.out.println(snowFlake.nextId());}}
}
时钟回拨问题:
当某台机器的时间出现了问题,回到了前几秒,则调用该机器雪花算法时,会生成重复的id,因为前几秒是时间已经生成过id了。
根据实际的业务和机器的情况不同,有几种解决方案:
- 当回拨的时间不长,比如不到100ms,小于接口调用超时时间,则可以用sleep方法等待时间正常。
- 当回拨时间适中,比如100ms~1s内,等待的话会接口超时,这种情况,可以将前一秒的每个ms的最大序列号维护在缓存中,然后maxId+1。
- 当回拨时间比较长,可以重试调用其他机器生成id,等过一段时间再调用该机器。或者直接把这个机器下线掉。
雪花算法生成架构:
部署多个服务,通过服务发现被应用服务调用,同时机器id可以动态通过zookeeper(可以生成自增序列)获取。
总结
分布式主键id的生成方式有很多种,最重要的是根据自己的实际业务情况来选择最合适自己的一种方式。
相关文章:

分布式主键ID生成方式-snowflake雪花算法
这里写自定义目录标题 一、业务场景二、技术选型1、UUID方案2、Leaf方案-美团(基于数据库自增id)3、Snowflake雪花算法方案 总结 一、业务场景 大量的业务数据需要保存到数据库中,原来的单库单表的方式扛不住大数据量、高并发,需…...
深入理解感知机(Perceptron)算法
深入理解感知机(Perceptron)算法 1. 引言 感知机是神经网络和深度学习的基石,由Frank Rosenblatt在1957年提出。它模拟了生物神经元的基本特征,是一个简单但重要的二分类线性分类器。本文将从数学原理到实际应用,全面介绍感知机算法。 2. 数学基础 2.1 定义 感知机是一…...

操作系统——死锁与饥饿
死锁的概念 死锁产生的条件 前三种条件可能会产生死锁,第四种条件(环路)可能会产生死锁 机器检测是否死锁是——检测是否有环路 解决死锁 以上预防死锁的方法不太实用,低效 银行家算法 P2运行完后可用队列就变成了 6 2 3…...

【算法】字符串算法技巧系列
阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 引入:字符串相关算法技巧 1:字符串转数组 2:子字符串 3ÿ…...

Vue中el-tree结合vuedraggable实现跨组件元素拖拽
实现效果: 左侧el-tree: <template><el-treeclass"filter-tree":data"treeData":props"defaultProps":filter-node-method"filterNode"node-key"id"draggable:allow-drop"allowDrop"node-dr…...

湘潭大学人机交互复习
老师没给题型也没划重点,随便看看复习了 什么是人机交互 人机交互(Human-Computer Interaction,HCI)是关于设计、评价和实现供人们使用的交互式计算机系统,并围绕相关的主要现象进行研究的学科。 人机交互研究内容 …...

基于ADAS 与关键点特征金字塔网络融合的3D LiDAR目标检测原理与算法实现
一、概述 3D LiDAR目标检测是一种在三维空间中识别和定位感兴趣目标的技术。在自动驾驶系统和先进的空间分析中,目标检测方法的不断演进至关重要。3D LiDAR目标检测作为一种变革性的技术,在环境感知方面提供了前所未有的准确性和深度信息. 在这里&…...
Kivy App开发之UX控件DropDown下拉列表
怎样在kivy中实现下拉列表的功能? 在kivy中,下拉列表的定位是自动的,即列表展开的位置根据上下方是否有控件自动调整,且可以包含其他控件,如按钮,图片等。 在应用中,需要使用base包下的runTouchApp类,用于触发下拉框。 DropDown控件常见的属性如下 属性相关说明auto_…...

机器学习模型评估指标
模型的评估指标是衡量一个模型应用于对应任务的契合程度,常见的指标有: 准确率(Accuracy): 正确预测的样本数占总样本数的比例。适用于类别分布均衡的数据集。 精确率(Precision): 在所有被预测为正类的样…...
C# 特性
总目录 C# 语法总目录 C# 特性 特性1. 特性类自定义格式2. 特性的位置参数和命名参数3. 特性的目标4. 指定多个特性5. 调用者信息特性 特性 1. 特性类自定义格式 自定义特性类需要继承自Attribute类,特性使用通常都会省略名字后面的Attribute,会自动识…...
Reactor测试框架之StepVerifier
Reactor测试框架之StepVerifier 测试步骤1、创建StepVerifier实例2、添加断言3、执行验证 代码实例 在响应式编程中,Reactor框架提供了StepVerifier测试类,用于对响应式序列进行断言和验证。StepVerifier主要用于对Publisher发出的元素序列进行逐步的、精…...
k8s helm部署kafka集群(KRaft模式)——筑梦之路
添加helm仓库 helm repo add bitnami "https://helm-charts.itboon.top/bitnami" --force-update helm repo add grafana "https://helm-charts.itboon.top/grafana" --force-update helm repo add prometheus-community "https://helm-charts.itboo…...
unity action委托举例
using System; using UnityEngine; public class DelegateExample : MonoBehaviour { void Start() { // 创建委托实例并添加方法 Action myAction Method1; myAction Method2; myAction Method3; // 调用委托,会依次执…...

conda 批量安装requirements.txt文件
conda 批量安装requirements.txt文件中包含的组件依赖 conda install --yes --file requirements.txt #这种执行方式,一遇到安装不上就整体停止不会继续下面的包安装。 下面这条命令能解决上面出现的不执行后续包的问题,需要在CMD窗口执行: 点…...

Flutter:封装一个自用的bottom_picker选择器
效果图:单列选择器 使用bottom_picker: ^2.9.0实现,单列选择器,官方文档 pubspec.yaml # 底部选择 bottom_picker: ^2.9.0picker_utils.dart AppTheme:自定义的颜色 TextWidget.body Text() <Widget>[].toRow Row()下边代…...

Group3r:一款针对活动目录组策略安全的漏洞检测工具
关于Group3r Group3r是一款针对活动目录组策略安全的漏洞检测工具,可以帮助广大安全研究人员迅速枚举目标AD组策略中的相关配置,并识别其中的潜在安全威胁。 Group3r专为红蓝队研究人员和渗透测试人员设计,该工具可以通过将 LDAP 与域控制器…...

支持向量机算法(一):像讲故事一样讲明白它的原理及实现奥秘
1、支持向量机算法介绍 支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的模式识别方法, 属于有监督学习模型,主要用于解决数据分类问题。SVM将每个样本数据表示为空间中的点,使不同类别的…...
力扣-数组-35 搜索插入位置
解析 时间复杂度要求,所以使用二分的思想,漏掉了很多问题,这里记录 在left-right1时,已经找到了插入位置,但是没有赋值,然后break,所以导致一直死循环。 if(right - left 1){result right;b…...

List ---- 模拟实现LIST功能的发现
目录 listlist概念 list 中的迭代器list迭代器知识const迭代器写法list访问自定义类型 附录代码 list list概念 list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。list的底层是双向链表结构,双向链表中每个元素…...
HashMap和HashTable区别问题
并发:hashMap线程不安全,hashTable线程安全,底层在put操作的方法上加了synchronized 初始化:hashTable初始容量为11,hashmap初始容量为16 阔容因子:阔容因子都是0.75 扩容比例: 补充 hashMap…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...

springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...