深度学习领域创新黑马!频域特征融合新突破
最近,FreqFusion引起了广泛关注,这是一种创新的频率感知特征融合方法,可以提升数据处理的准确性和效率,尤其在语义分割、目标检测、实例分割和全景分割等任务中表现卓越。
通过结合频域分析与特征融合技术,FreqFusion能够捕捉传统时域分析难以揭示的频率特性,展现出深远的研究价值。
在现代数据分析和信号处理领域,频域特征融合技术越来越受到重视。这种融合方式不仅能够增强模型的性能,提高识别和分类的准确性,还广泛应用于音频处理、图像分析、通信系统及生物信号检测等多个领域,为我们提供了更深入的数据洞察和决策支持。
为了让大家更好地了解这一前沿技术,我整理了10篇频域特征融合的论文,以下放出部分,全部论文PDF版,扫码工zhong号【沃的顶会】 回复 10频域 即可领取。
Time-space-frequency feature Fusion for 3-channel motor imagery classification
文章解析
本文提出了一种名为TSFF-Net的新型网络架构,用于三通道运动想象分类。
该架构通过整合时域、空域和频域特征,有效克服了基于单一模式特征提取网络的局限性。
TSFF-Net包括四个主要部分:时频表示、时频特征提取、时空特征提取以及特征融合与分类。通过使用最大均值差异(MMD)损失来约束时频和时空特征在再生核希尔伯特空间中的分布,并采用加权融合方法,该网络在BCI4-2A和BCI4-2B数据集上的分类准确率显著优于其他现有方法。
创新点
1.提出了一种新型的TSFF-Net网络架构,通过整合时域、空域和频域特征来提高三通道运动想象脑电图(EEG)的分类性能;
2.使用最大均值差异(MMD)损失函数来约束不同模态特征的分布一致性,增强特征融合的鲁棒性;
3.在公共数据集上的实验结果表明,该方法在分类准确率上优于其他现有方法。

A Hybrid Transformer-Mamba Network for Single Image Deraining
文章解析
本文提出了一种名为TransMamba的混合Transformer-Mamba网络,用于单图像去雨。
该网络通过频域特征融合来有效捕捉雨滴的长距离依赖关系。
具体来说,网络设计了频谱带状Transformer块,通过在频谱域通道维度上执行自注意力机制来增强对长距离依赖的建模能力。
此外,还引入了频谱增强前馈模块,以聚合频谱域中的特征,进一步提升频率特定信息的处理。在编码器和解码器的每个阶段,通过通道级融合双分支特征,实现了多尺度信息的有效整合。
创新点
1.提出了一种新型的双分支混合Transformer-Mamba网络(TransMamba),专门用于单图像去雨,通过结合分别捕捉长距离依赖和局部与全局信息。
2.在Transformer分支中设计了频谱带状Transformer块,通过在频谱域执行自注意力机制来增强对长距离雨相关依赖的建模能力。
3.编码器和解码器的每个阶段,通过通道级融合双分支特征,并引入频谱一致性损失,以更好地重建清洁图像中的信号级关系。

全部论文PDF版,扫码工zhong号【沃的顶会】 回复 10频域 即可领取。
Temporal Lift Pooling for Continuous Sign Language Recognition
文章解析
本文提出了一种名为时序提升池化(Temporal Lift Pooling,TLP)的方法,用于连续手语识别(CSLR)。
TLP基于信号处理中的提升方案(Lifting Scheme),通过将输入信号分解为不同频率的子带,从而捕捉不同的时间运动模式。
这种方法通过信号分解、组件加权和信息融合三个阶段,生成精炼的缩小特征图。与传统的手工池化方法相比,TLP在连续手语识别任务中性能提升了1.5%,同时保持了相似的计算开销。
创新点
1.TLP基于信号处理中的提升方案,能够智能地对不同时间层次的特征进行下采样。
2.通过信号分解、组件加权和信息融合三个阶段,生成精炼的缩小特征图。
3.将TLP应用于连续手语识别(CSLR)任务,实验结果表明其性能优于传统的手工池化方法和专门的空间变体。
4.作为一种鲁棒的特征提取器,在多个数据集和不同的网络架构上展现出优异的泛化性能。

相关文章:
深度学习领域创新黑马!频域特征融合新突破
最近,FreqFusion引起了广泛关注,这是一种创新的频率感知特征融合方法,可以提升数据处理的准确性和效率,尤其在语义分割、目标检测、实例分割和全景分割等任务中表现卓越。 通过结合频域分析与特征融合技术,FreqFusion…...
路由器的转发表
【4-24】 已知路由器R₁ 的转发表如表T-4-24 所示。 表T-4-24 习题4-24中路由器R₁的转发表 前缀匹配 下一跳地址 路由器接口 140.5.12.64/26 180.15.2.5 m2 130.5.8/24 190.16.6.2 ml 110.71/16 ----- m0 180.15/16 ----- m2 190.16/16 ----- ml 默认 11…...
用Cline打造你的智能搜索助手:Tavily Search MCP集成指南
引言 本文将详细介绍如何在Cline编辑器中集成Tavily Search智能搜索功能。我们将从MCP(Model Context Protocol)协议基础开始,深入探讨Tavily Search MCP服务器的安装配置、使用方法,以及进阶的二次开发技巧。无论你是AI开发者还…...
HTML+CSS+JS制作中华传统美食主题网站(内附源码,含5个页面)
一、作品介绍 HTMLCSSJS制作一个中华传统文化主题网站,包含首页、菜系页、食材页、名厨页、美食故事页等5个静态页面。其中每个页面都包含一个导航栏、一个主要区域和一个底部区域。 二、页面结构 1. 顶部横幅导航区 包含网站Logo、搜索栏、主导航菜单࿰…...
黄仁勋CES 2025演讲重点内容
黄仁勋CES 2025演讲重点内容 硬件产品发布 GeForce RTX 50系列GPU: 架构与性能提升:正式发布的新一代GeForce RTX 50系列GPU采用英伟达旗舰的Blackwell架构,这是自25年前引入可编程着色技术以来计算机图形领域最重大的创新。该系列显卡在图形…...
TVbox 手机、智能电视节目一网打尽
文章目录 一、简要介绍二、优点三、下载地址 一、简要介绍 TVbox是目前最火爆的多端、多源的电视影音工具,是一款开源的自定义添加站源的影音工具。TVBox,支持电视频道直播。一款TV端影视工具,软件本身不具有任何影视资源,但可以…...
sys.dm_exec_connections:查询与 SQL Server 实例建立的连接有关的信息以及每个连接的详细信息(客户端ip)
文章目录 引言I 基于dm_exec_connections查询客户端ip权限物理联接时间范围dm_exec_connections表see also: 监视SQL Server 内存使用量资源信号灯 DMV sys.dm_exec_query_resource_semaphores( 确定查询执行内存的等待)引言 查询历史数据库客户端ip应用场景: 安全分析缺乏…...
kubesphere前端源码运行
一、下载源码 源码是react,下载地址是 GitHub - kubesphere/console at v3.3.2 然后直接用git下拉就可以了 下拉完成后差不多是这样一个目录结构,记得切分支到3.3.2 二、下载依赖 1、node & yurn 想要运行源码首先需要node,使用刚才…...
分布式主键ID生成方式-snowflake雪花算法
这里写自定义目录标题 一、业务场景二、技术选型1、UUID方案2、Leaf方案-美团(基于数据库自增id)3、Snowflake雪花算法方案 总结 一、业务场景 大量的业务数据需要保存到数据库中,原来的单库单表的方式扛不住大数据量、高并发,需…...
深入理解感知机(Perceptron)算法
深入理解感知机(Perceptron)算法 1. 引言 感知机是神经网络和深度学习的基石,由Frank Rosenblatt在1957年提出。它模拟了生物神经元的基本特征,是一个简单但重要的二分类线性分类器。本文将从数学原理到实际应用,全面介绍感知机算法。 2. 数学基础 2.1 定义 感知机是一…...
操作系统——死锁与饥饿
死锁的概念 死锁产生的条件 前三种条件可能会产生死锁,第四种条件(环路)可能会产生死锁 机器检测是否死锁是——检测是否有环路 解决死锁 以上预防死锁的方法不太实用,低效 银行家算法 P2运行完后可用队列就变成了 6 2 3…...
【算法】字符串算法技巧系列
阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 引入:字符串相关算法技巧 1:字符串转数组 2:子字符串 3ÿ…...
Vue中el-tree结合vuedraggable实现跨组件元素拖拽
实现效果: 左侧el-tree: <template><el-treeclass"filter-tree":data"treeData":props"defaultProps":filter-node-method"filterNode"node-key"id"draggable:allow-drop"allowDrop"node-dr…...
湘潭大学人机交互复习
老师没给题型也没划重点,随便看看复习了 什么是人机交互 人机交互(Human-Computer Interaction,HCI)是关于设计、评价和实现供人们使用的交互式计算机系统,并围绕相关的主要现象进行研究的学科。 人机交互研究内容 …...
基于ADAS 与关键点特征金字塔网络融合的3D LiDAR目标检测原理与算法实现
一、概述 3D LiDAR目标检测是一种在三维空间中识别和定位感兴趣目标的技术。在自动驾驶系统和先进的空间分析中,目标检测方法的不断演进至关重要。3D LiDAR目标检测作为一种变革性的技术,在环境感知方面提供了前所未有的准确性和深度信息. 在这里&…...
Kivy App开发之UX控件DropDown下拉列表
怎样在kivy中实现下拉列表的功能? 在kivy中,下拉列表的定位是自动的,即列表展开的位置根据上下方是否有控件自动调整,且可以包含其他控件,如按钮,图片等。 在应用中,需要使用base包下的runTouchApp类,用于触发下拉框。 DropDown控件常见的属性如下 属性相关说明auto_…...
机器学习模型评估指标
模型的评估指标是衡量一个模型应用于对应任务的契合程度,常见的指标有: 准确率(Accuracy): 正确预测的样本数占总样本数的比例。适用于类别分布均衡的数据集。 精确率(Precision): 在所有被预测为正类的样…...
C# 特性
总目录 C# 语法总目录 C# 特性 特性1. 特性类自定义格式2. 特性的位置参数和命名参数3. 特性的目标4. 指定多个特性5. 调用者信息特性 特性 1. 特性类自定义格式 自定义特性类需要继承自Attribute类,特性使用通常都会省略名字后面的Attribute,会自动识…...
Reactor测试框架之StepVerifier
Reactor测试框架之StepVerifier 测试步骤1、创建StepVerifier实例2、添加断言3、执行验证 代码实例 在响应式编程中,Reactor框架提供了StepVerifier测试类,用于对响应式序列进行断言和验证。StepVerifier主要用于对Publisher发出的元素序列进行逐步的、精…...
k8s helm部署kafka集群(KRaft模式)——筑梦之路
添加helm仓库 helm repo add bitnami "https://helm-charts.itboon.top/bitnami" --force-update helm repo add grafana "https://helm-charts.itboon.top/grafana" --force-update helm repo add prometheus-community "https://helm-charts.itboo…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
验证redis数据结构
一、功能验证 1.验证redis的数据结构(如字符串、列表、哈希、集合、有序集合等)是否按照预期工作。 2、常见的数据结构验证方法: ①字符串(string) 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...
RLHF vs RLVR:对齐学习中的两种强化方式详解
在语言模型对齐(alignment)中,强化学习(RL)是一种重要的策略。而其中两种典型形式——RLHF(Reinforcement Learning with Human Feedback) 与 RLVR(Reinforcement Learning with Ver…...
20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题
20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题 2025/6/9 20:54 缘起,为了跨网段推流,千辛万苦配置好了网络参数。 但是命令iptables -t filter -F tetherctrl_FORWARD可以在调试串口/DEBUG口正确执行。…...
LTR-381RGB-01RGB+环境光检测应用场景及客户类型主要有哪些?
RGB环境光检测 功能,在应用场景及客户类型: 1. 可应用的儿童玩具类型 (1) 智能互动玩具 功能:通过检测环境光或物体颜色触发互动(如颜色识别积木、光感音乐盒)。 客户参考: LEGO(乐高&#x…...
统计按位或能得到最大值的子集数目
我们先来看题目描述: 给你一个整数数组 nums ,请你找出 nums 子集 按位或 可能得到的 最大值 ,并返回按位或能得到最大值的 不同非空子集的数目 。 如果数组 a 可以由数组 b 删除一些元素(或不删除)得到,…...
