kubesphere前端源码运行
一、下载源码
源码是react,下载地址是
GitHub - kubesphere/console at v3.3.2
然后直接用git下拉就可以了

下拉完成后差不多是这样一个目录结构,记得切分支到3.3.2

二、下载依赖
1、node & yurn
想要运行源码首先需要node,使用刚才下载源码的网站中推荐的node14.21.3版本
这边提供网址下载:Node.js — 节点 v14.21.3 (LTS)
安装全点下一步就好。
然后验证一下安装是否成功:

下载yurn1.22.4版本,在终端输入:
npm install -g yarn@1.22.4

设置node源和yurn源以及跳过ssh验证否则下载依赖可能过慢或需要https验证导致失败,跟着输入一遍:
npm config set registry https://registry.npmmirror.com
npm config set strict-ssl false -g
yarn config set registry https://registry.npmmirror.com/
yarn config set "strict-ssl" false -g

2、python
想要运行源码需要下载python,但python3改变了部分结构架构,使用python3会导致下载依赖时node-sass不兼容然后下载失败,所以使用python2.7
下载地址:Python 2.7.0 Release | Python.org

同样是全点下一步,但要记住安装目录,我这边安装到了D:\python\python2.7

然后告诉node使用的python地址,后面换成你的python然后加个\python:
npm config set python D:\python\python2.7\python
3、依赖下载
直接输入命令:
yarn install --network-timeout 1000000

然后构建一下输入:
yarn build

构建成功会弹一个网页

三、k8s端口开放
想要运行的kubesphere源码链接真正的k8s集群,需要k8s主节点执行以下命令开放一个端口:
kubectl -n kubesphere-system patch svc ks-apiserver -p '{"spec":{"type":"NodePort","ports":[{"port":80,"protocal":"TCP","targetPort":9090,"nodePort":30881}]}}'
![]()
四、源码修改
源码有些地方在linux中运行能成功,但如果想在windows运行则需要修改一点代码
以下以开头/代表项目根目录
1、/package.json
修改第85行server的内容为:
set NODE_ENV=production && node server/server.js
2、/server/config.yaml
修改第31和32行中的服务地址(第三步中开启的服务):
url: http://192.168.1.121:30881
wsUrl: ws://192.168.1.121:30881
3、/server/components/boot.js
删掉38行然后添加:
let httpStatic = {}if(process.env.NODE_ENV == 'production'){httpStatic = serverConfig.http.static['production']}else{httpStatic = serverConfig.http.static['development']}

五、运行
终端输入:
npm run serve
默认地址是8000,浏览器访问,OK



相关文章:
kubesphere前端源码运行
一、下载源码 源码是react,下载地址是 GitHub - kubesphere/console at v3.3.2 然后直接用git下拉就可以了 下拉完成后差不多是这样一个目录结构,记得切分支到3.3.2 二、下载依赖 1、node & yurn 想要运行源码首先需要node,使用刚才…...
分布式主键ID生成方式-snowflake雪花算法
这里写自定义目录标题 一、业务场景二、技术选型1、UUID方案2、Leaf方案-美团(基于数据库自增id)3、Snowflake雪花算法方案 总结 一、业务场景 大量的业务数据需要保存到数据库中,原来的单库单表的方式扛不住大数据量、高并发,需…...
深入理解感知机(Perceptron)算法
深入理解感知机(Perceptron)算法 1. 引言 感知机是神经网络和深度学习的基石,由Frank Rosenblatt在1957年提出。它模拟了生物神经元的基本特征,是一个简单但重要的二分类线性分类器。本文将从数学原理到实际应用,全面介绍感知机算法。 2. 数学基础 2.1 定义 感知机是一…...
操作系统——死锁与饥饿
死锁的概念 死锁产生的条件 前三种条件可能会产生死锁,第四种条件(环路)可能会产生死锁 机器检测是否死锁是——检测是否有环路 解决死锁 以上预防死锁的方法不太实用,低效 银行家算法 P2运行完后可用队列就变成了 6 2 3…...
【算法】字符串算法技巧系列
阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 引入:字符串相关算法技巧 1:字符串转数组 2:子字符串 3ÿ…...
Vue中el-tree结合vuedraggable实现跨组件元素拖拽
实现效果: 左侧el-tree: <template><el-treeclass"filter-tree":data"treeData":props"defaultProps":filter-node-method"filterNode"node-key"id"draggable:allow-drop"allowDrop"node-dr…...
湘潭大学人机交互复习
老师没给题型也没划重点,随便看看复习了 什么是人机交互 人机交互(Human-Computer Interaction,HCI)是关于设计、评价和实现供人们使用的交互式计算机系统,并围绕相关的主要现象进行研究的学科。 人机交互研究内容 …...
基于ADAS 与关键点特征金字塔网络融合的3D LiDAR目标检测原理与算法实现
一、概述 3D LiDAR目标检测是一种在三维空间中识别和定位感兴趣目标的技术。在自动驾驶系统和先进的空间分析中,目标检测方法的不断演进至关重要。3D LiDAR目标检测作为一种变革性的技术,在环境感知方面提供了前所未有的准确性和深度信息. 在这里&…...
Kivy App开发之UX控件DropDown下拉列表
怎样在kivy中实现下拉列表的功能? 在kivy中,下拉列表的定位是自动的,即列表展开的位置根据上下方是否有控件自动调整,且可以包含其他控件,如按钮,图片等。 在应用中,需要使用base包下的runTouchApp类,用于触发下拉框。 DropDown控件常见的属性如下 属性相关说明auto_…...
机器学习模型评估指标
模型的评估指标是衡量一个模型应用于对应任务的契合程度,常见的指标有: 准确率(Accuracy): 正确预测的样本数占总样本数的比例。适用于类别分布均衡的数据集。 精确率(Precision): 在所有被预测为正类的样…...
C# 特性
总目录 C# 语法总目录 C# 特性 特性1. 特性类自定义格式2. 特性的位置参数和命名参数3. 特性的目标4. 指定多个特性5. 调用者信息特性 特性 1. 特性类自定义格式 自定义特性类需要继承自Attribute类,特性使用通常都会省略名字后面的Attribute,会自动识…...
Reactor测试框架之StepVerifier
Reactor测试框架之StepVerifier 测试步骤1、创建StepVerifier实例2、添加断言3、执行验证 代码实例 在响应式编程中,Reactor框架提供了StepVerifier测试类,用于对响应式序列进行断言和验证。StepVerifier主要用于对Publisher发出的元素序列进行逐步的、精…...
k8s helm部署kafka集群(KRaft模式)——筑梦之路
添加helm仓库 helm repo add bitnami "https://helm-charts.itboon.top/bitnami" --force-update helm repo add grafana "https://helm-charts.itboon.top/grafana" --force-update helm repo add prometheus-community "https://helm-charts.itboo…...
unity action委托举例
using System; using UnityEngine; public class DelegateExample : MonoBehaviour { void Start() { // 创建委托实例并添加方法 Action myAction Method1; myAction Method2; myAction Method3; // 调用委托,会依次执…...
conda 批量安装requirements.txt文件
conda 批量安装requirements.txt文件中包含的组件依赖 conda install --yes --file requirements.txt #这种执行方式,一遇到安装不上就整体停止不会继续下面的包安装。 下面这条命令能解决上面出现的不执行后续包的问题,需要在CMD窗口执行: 点…...
Flutter:封装一个自用的bottom_picker选择器
效果图:单列选择器 使用bottom_picker: ^2.9.0实现,单列选择器,官方文档 pubspec.yaml # 底部选择 bottom_picker: ^2.9.0picker_utils.dart AppTheme:自定义的颜色 TextWidget.body Text() <Widget>[].toRow Row()下边代…...
Group3r:一款针对活动目录组策略安全的漏洞检测工具
关于Group3r Group3r是一款针对活动目录组策略安全的漏洞检测工具,可以帮助广大安全研究人员迅速枚举目标AD组策略中的相关配置,并识别其中的潜在安全威胁。 Group3r专为红蓝队研究人员和渗透测试人员设计,该工具可以通过将 LDAP 与域控制器…...
支持向量机算法(一):像讲故事一样讲明白它的原理及实现奥秘
1、支持向量机算法介绍 支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的模式识别方法, 属于有监督学习模型,主要用于解决数据分类问题。SVM将每个样本数据表示为空间中的点,使不同类别的…...
力扣-数组-35 搜索插入位置
解析 时间复杂度要求,所以使用二分的思想,漏掉了很多问题,这里记录 在left-right1时,已经找到了插入位置,但是没有赋值,然后break,所以导致一直死循环。 if(right - left 1){result right;b…...
List ---- 模拟实现LIST功能的发现
目录 listlist概念 list 中的迭代器list迭代器知识const迭代器写法list访问自定义类型 附录代码 list list概念 list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。list的底层是双向链表结构,双向链表中每个元素…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
