@SneakyThrows 注解详解
@SneakyThrows 注解详解
1. 基本介绍
@SneakyThrows 是 Lombok 提供的注解,用于简化异常处理,自动生成 try-catch 代码块,将检查型异常转换为非检查型异常。
2. 使用对比
2.1 传统写法
public String readFile(String path) {try {return Files.readString(Paths.get(path));} catch (IOException e) {throw new RuntimeException(e);}
}
2.2 @SneakyThrows写法
@SneakyThrows
public String readFile(String path) {return Files.readString(Paths.get(path));
}
3. 常见应用场景
3.1 文件操作
@SneakyThrows
public byte[] readBytes(String filename) {return Files.readAllBytes(Paths.get(filename));
}
3.2 JSON处理
@SneakyThrows
public String toJson(Object obj) {return objectMapper.writeValueAsString(obj);
}
3.3 线程操作
@SneakyThrows
public void sleep(long millis) {Thread.sleep(millis);
}
4. 使用建议
4.1 适合使用的场景
✅ 简单的IO操作
✅ 基础的类型转换
✅ 确定不会发生异常的场景
✅ 测试代码编写
4.2 不建议使用的场景
❌ 复杂的业务逻辑
❌ 需要详细日志记录的场景
❌ 需要精确异常处理的场景
❌ 需要资源清理的场景
5. 实现原理
Lombok 在编译时将注解转换为以下代码:
public String readFile(String path) {try {return Files.readString(Paths.get(path));} catch (Throwable *t*) {throw lombokSneakyThrow(t);}}
6. 最佳实践
6.1 好的示例
public class GoodExample {@SneakyThrowspublic byte[] readResource(String name) {return getClass().getResourceAsStream(name).readAllBytes();}
}
6.2 不好的示例
public class BadExample {// 不推荐:需要特殊处理的业务逻辑@SneakyThrowspublic void processBusinessLogic() {// 复杂的业务处理// 可能需要日志记录// 可能需要事务回滚}
}
7. 注意事项
- 使用前确保添加 Lombok 依赖
- 理解被处理的异常类型
- 考虑代码可维护性
- 不要过度使用
相关文章:
@SneakyThrows 注解详解
SneakyThrows 注解详解 1. 基本介绍 SneakyThrows 是 Lombok 提供的注解,用于简化异常处理,自动生成 try-catch 代码块,将检查型异常转换为非检查型异常。 2. 使用对比 2.1 传统写法 public String readFile(String path) {try {return …...
js监测页面可见性
监测切换页面 检测页面的可见性状态document.visibilityState:document.hiddenvisibilitychange 事件 js 检测页面切换至别的应用 检测页面的可见性状态 在JavaScript中,你可以使用Page Visibility API来检测页面的可见性状态。这个API提供了一组接口,允…...
Android wifi常见问题及分析
参考 Android Network/WiFi 那些事儿 前言 本文将讨论几个有意思的网络问题,同时介绍 Android 上常见WiFi 问题的分析思路。 网络基础Q & A 一. 网络分层缘由 分层想必大家很熟悉,是否想过为何需要这样分层? 网上大多都是介绍每一层…...
EFCore HasDefaultValueSql
今天小伙伴在代码中遇到了有关 HasDefaultValue 的疑问,这里整理澄清下... 在使用 Entity Framework Core (EFCore) 配置实体时,HasDefaultValue 方法会为数据库列设置一个默认值。该默认值的行为取决于以下条件: 1. 配置 HasDefaultValue 的…...
Win10微调大语言模型ChatGLM2-6B
在《Win10本地部署大语言模型ChatGLM2-6B-CSDN博客》基础上进行,官方文档在这里,参考了这篇文章 首先确保ChatGLM2-6B下的有ptuning AdvertiseGen下载地址1,地址2,文件中数据留几行 模型文件下载地址 (注意࿱…...
什么叫区块链?怎么保证区块链的安全性?
区块链(Blockchain)是一种分布式数据库或账本技术,它通过去中心化的方式记录交易或其他数据,并确保这些记录是安全、透明和不可篡改的。区块链最初是作为比特币(Bitcoin)加密货币的基础技术而被公众所知&am…...
一、智能体强化学习——强化学习基础
1.1 强化学习与深度学习的基本概念 1.1.1 强化学习的核心思想 什么是强化学习? 强化学习(Reinforcement Learning, RL):指在与环境(Environment)的反复交互中,智能体(Agent&#x…...
【DES加密】
什么是DES DES(Data Encryption Standard) 是一种对称加密算法。它的设计目标是提供高度的数据安全性和性能。 DES的概念 DES使用56位的密钥和64位的明文块进行加密。DES算法的分组大小是64位,因此,如果需要加密的明文长度不足64位,需要进…...
.NET中的框架和运行环境
在.NET生态系统中,框架和运行环境是两个不同的概念,它们各自扮演着重要的角色。 下面我将分别介绍.NET中的框架和运行环境,并解释它们之间的区别。 .NET 框架(Frameworks) 框架提供了一套预定义的类库、工具和服务&…...
探索微软 M365 安全:全方位守护数字世界
在当今这个科技呈井喷式飞速发展,数字化浪潮以汹涌澎湃、锐不可当之势席卷全球的时代,企业与个人仿若置身于一片浩瀚无垠、信息奔涌的海洋之中,尽情畅享着技术革新所带来的无穷无尽便利。然而,恰如平静海面下潜藏着暗礁与汹涌暗流,网络安全问题恰似隐匿在暗处、随时可能给…...
深入探索AI核心模型:CNN、RNN、GAN与Transformer
在人工智能的飞速发展中,众多深度学习模型和算法不断涌现,推动了许多领域的进步。特别是在图像识别、自然语言处理、生成建模等方向,AI模型的应用越来越广泛。本文将介绍几种最常用的AI模型,包括卷积神经网络(CNN&…...
Java - Http 通讯
Java - Http 通讯 PS: 1. Http 协议 POST | GET 请求; 2. 支持 报头、报文、参数 自定义配置; 3. GET 返回支持 String | Stream; 4. 相关依赖: <dependency><groupId>org.apache.httpcomponents</groupId><…...
C++ Qt练习项目 QChar功能测试
个人学习笔记 代码仓库 GitCode - 全球开发者的开源社区,开源代码托管平台 新建项目 设计UI 1、拖入group box去掉名字 2、拖入2个LineEdit 3、拖入两个Label 4、拖入两个PushButton 5、点栅格布局 1、拖入GroupBox 2、拖入4个PushButton 3、点栅格布局 1、拖入GroupBo…...
android 官网刷机和线刷
nexus、pixel可使用google官网线上刷机的方法。网址:https://flash.android.com/ 本文使用google线上刷机,将Android14 刷为Android12 以下是失败的线刷经历。 准备工作 下载升级包。https://developers.google.com/android/images?hlzh-cn 注意&…...
二叉树层序遍历 Leetcode102.二叉树的层序遍历
二叉树的层序遍历相当于图论的广度优先搜索,用队列来实现 (二叉树的递归遍历相当于图论的深度优先搜索) 102.二叉树的层序遍历 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右…...
DELTA并联机械手视觉方案荣获2024年度机器人应用典型案例奖
直击现场 2025年1月9日晚,2024深圳市机器人年度评选颁奖典礼在深圳市南山区圣淘沙酒店正式拉开帷幕。本次颁奖活动由中国科学院深圳先进技术研究院指导,深圳市机器人协会与《机器人与智能系统》杂志组织承办。 正运动公司受邀参与此次典礼,…...
Netty 入门学习
前言 学习Spark源码绕不开通信,Spark通信是基于Netty实现的,所以先简单学习总结一下Netty。 Spark 通信历史 最开始: Akka Spark 1.3: 开始引入Netty,为了解决大块数据(如Shuffle)的传输问题 Spark 1.6&…...
Magentic-One、AutoGen、LangGraph、CrewAI 或 OpenAI Swarm:哪种多 AI 代理框架最好?
目录 一、说明 二、 AutoGen-自动生成(微软) 2.1 特征 2.2 局限性 三、 CrewAI 3.1 特征 3.2 限制: 四、LangGraph 4.1 特征: 4.2 限制: 五、OpenAI Swarm 5.1 特征 5.2 限制 六、Magentic-One 6.1 特征 6.2 限制 七、…...
openstack下如何生成centos9 centos10 和Ubuntu24 镜像
如何生成一个centos 10和centos 9 的镜像1. 下载 对应的版本 wget https://cloud.centos.org/centos/10-stream/x86_64/images/CentOS-Stream-GenericCloud-x86_64-10-latest.x86_64.qcow2 wget https://cloud.centos.org/centos/9-stream/x86_64/images/CentOS-Stream-Gener…...
Kivy App开发之UX控件Slider滑块
在app中可能会调节如音量,亮度等,可以使用Slider来实现,该控件调用方便,兼容性好,滑动平稳。在一些参数设置中,也可以用来调整数值。 支持水平和垂直方向,可以设置默认值,最小及最大值。 使用方法,需用引入Slider类,通过Slider类生成一个滑块并设置相关的样式后,再…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
