Python的秘密基地--[章节11] Python 性能优化与多线程编程
第11章:Python 性能优化与多线程编程
在开发复杂系统时,性能优化和并发编程是不可忽视的重点。Python 提供了多种工具和技术用于优化代码性能,并通过多线程、多进程等方式实现并发处理。本章将探讨如何在 Python 中提升性能,并实现多线程和多进程编程。
11.1 Python 性能优化
11.1.1 使用内置函数与库
Python 的内置函数和标准库通常经过高度优化,能够显著提高性能。
示例:使用内置函数代替循环
# 使用 sum 内置函数
numbers = [1, 2, 3, 4, 5]
result = sum(numbers) # 比手动循环累加更快
优选库:NumPy
对于需要处理大量数值计算的场景,使用 NumPy 代替纯 Python 代码会有显著性能提升。
import numpy as nparray = np.array([1, 2, 3, 4, 5])
print(np.sum(array)) # 更高效的数组运算
11.1.2 使用缓存技术
Python 的 functools.lru_cache 提供了一种简单的缓存机制,用于存储函数调用的结果,从而避免重复计算。
示例:递归斐波那契加速
from functools import lru_cache@lru_cache(maxsize=None)
def fibonacci(n):if n < 2:return nreturn fibonacci(n-1) + fibonacci(n-2)print(fibonacci(50)) # 快速计算
11.1.3 优化数据结构选择
根据使用场景选择合适的数据结构,例如:
- 列表(list):适合动态大小的数组操作。
- 集合(set):适合快速去重和查找。
- 字典(dict):适合键值对存储和快速查找。
示例:利用集合去重
# 去除重复元素
data = [1, 2, 2, 3, 4, 4]
unique_data = set(data)
11.1.4 使用并行化与向量化
对于 CPU 密集型任务,可以使用 多线程、多进程 或 向量化计算 来提高性能。
示例:并行化处理大规模数据
from multiprocessing import Pooldef square(n):return n ** 2with Pool(4) as pool:results = pool.map(square, range(1000000))
11.2 Python 并发编程
11.2.1 线程与线程池
Python 的 threading
模块支持多线程编程,但由于 GIL(全局解释器锁) 的限制,多线程更适合 I/O 密集型任务。
示例:使用 threading 模块
import threadingdef print_numbers():for i in range(5):print(i)# 创建线程
thread = threading.Thread(target=print_numbers)
thread.start()
thread.join()
线程池
对于大量线程管理,使用 concurrent.futures
模块中的线程池更加高效。
from concurrent.futures import ThreadPoolExecutordef square(n):return n ** 2with ThreadPoolExecutor(max_workers=4) as executor:results = list(executor.map(square, range(10)))
print(results)
11.2.2 多进程编程
Python 的 multiprocessing
模块绕过了 GIL,更适合 CPU 密集型任务。
示例:使用多进程
from multiprocessing import Processdef print_numbers():for i in range(5):print(i)process = Process(target=print_numbers)
process.start()
process.join()
进程池
与线程池类似,multiprocessing.Pool
提供了简洁的多进程管理。
from multiprocessing import Pooldef square(n):return n ** 2with Pool(4) as pool:results = pool.map(square, range(10))
print(results)
11.2.3 协程与异步编程
Python 的 asyncio
模块支持协程,用于处理高效的异步 I/O。
示例:基本异步任务
import asyncioasync def hello():print("Hello")await asyncio.sleep(1)print("World")asyncio.run(hello())
多个异步任务并发执行
async def task(name, delay):await asyncio.sleep(delay)print(f"Task {name} completed")async def main():tasks = [task("A", 2), task("B", 1)]await asyncio.gather(*tasks)asyncio.run(main())
11.3 性能分析工具
11.3.1 使用 cProfile
cProfile
是 Python 内置的性能分析工具,用于查找代码中的性能瓶颈。
示例:分析代码性能
import cProfiledef slow_function():total = 0for i in range(100000):total += ireturn totalcProfile.run('slow_function()')
11.3.2 使用 line_profiler
line_profiler
是一个第三方工具,用于逐行分析函数性能。
安装
pip install line_profiler
示例
在函数顶部添加装饰器 @profile
,然后运行 kernprof
工具进行分析:
@profile
def slow_function():total = 0for i in range(100000):total += ireturn total
运行命令:
kernprof -l -v script.py
11.4 小结
本章介绍了:
- 性能优化:使用内置函数、缓存技术、优化数据结构和并行计算提升程序性能。
- 并发编程:利用多线程、多进程和协程实现高效并发。
- 性能分析工具:使用
cProfile
和line_profiler
分析代码性能。
下一章我们将进入 Python 网络编程的世界! 🌐📡
相关文章:
Python的秘密基地--[章节11] Python 性能优化与多线程编程
第11章:Python 性能优化与多线程编程 在开发复杂系统时,性能优化和并发编程是不可忽视的重点。Python 提供了多种工具和技术用于优化代码性能,并通过多线程、多进程等方式实现并发处理。本章将探讨如何在 Python 中提升性能,并实…...

drawDB docker部属
docker pull xinsodev/drawdb docker run --name some-drawdb -p 3000:80 -d xinsodev/drawdb浏览器访问:http://192.168.31.135:3000/...

探索图像编辑的无限可能——Adobe Photoshop全解析
文章目录 前言一、PS的历史二、PS的应用场景三、PS的功能及工具用法四、图层的概念五、调整与滤镜六、创建蒙版七、绘制形状与路径八、实战练习结语 前言 在当今数字化的世界里,视觉内容无处不在,而创建和编辑这些内容的能力已经成为许多行业的核心技能…...

【Vim Masterclass 笔记13】第 7 章:Vim 核心操作之——文本对象与宏操作 + S07L28:Vim 文本对象
文章目录 Section 7:Text Objects and MacrosS07L28 Text Objects1 文本对象的含义2 操作文本对象的基本语法3 操作光标所在的整个单词4 删除光标所在的整个句子5 操作光标所在的整个段落6 删除光标所在的中括号内的文本7 删除光标所在的小括号内的文本8 操作尖括号…...

Spring Boot教程之五十五:Spring Boot Kafka 消费者示例
Spring Boot Kafka 消费者示例 Spring Boot 是 Java 编程语言中最流行和使用最多的框架之一。它是一个基于微服务的框架,使用 Spring Boot 制作生产就绪的应用程序只需很少的时间。Spring Boot 可以轻松创建独立的、生产级的基于 Spring 的应用程序,您可…...
统计有序矩阵中的负数
统计有序矩阵中的负数 描述 给你一个 m * n 的矩阵 grid,矩阵中的元素无论是按行还是按列,都以非递增顺序排列。 请你统计并返回 grid 中 负数 的数目 示例 1: 输入:grid [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]]…...

【6】Word:海名公司文秘❗
目录 题目 List.docx Word.docx List.docx和Word.docx 题目 List.docx 选中1/4全角空格复制→选中全部文本→开始→替换:粘贴将1/4全角空格 替换成 空格选中全部文本→插入→表格→将文本转化成表格→勾选和布局→自动调整→勾选 选中第一列,单机右键…...
c语言 --- 字符串
创建字符串 1. 使用字符数组创建字符串 #include <stdio.h>int main() {char str[20] "Hello, world!";str[0] h; // 修改字符串的第一个字符printf("%s\n", str); // 输出:hello, world!return 0; }解释: 数组大小 20 表…...

LeetCode 热题 100_二叉树的最近公共祖先(49_236_中等_C++)(二叉树;深度优先搜索)
LeetCode 热题 100_二叉树的最近公共祖先(49_236) 题目描述:输入输出样例:题解:解题思路:思路一(深度优先搜索): 代码实现代码实现(思路一(深度优…...
(三)c#中const、static、readonly的区别
在 C# 中,const、static 和 readonly 都是用来定义不可变的值,但它们有一些关键的区别。让我们详细比较一下这三者的用途和特点: 1. const(常量) 编译时常量:const 用于声明常量,其值必须在编…...

人工智能任务19-基于BERT、ELMO模型对诈骗信息文本进行识别与应用
大家好,我是微学AI,今天给大家介绍一下人工智能任务19-基于BERT、ELMO模型对诈骗信息文本进行识别与应用。近日,演员王星因接到一份看似来自知名公司的拍戏邀约,被骗至泰国并最终被带到缅甸。这一事件迅速引发了社会的广泛关注。该…...

【C++】函数(下)
1、函数的常见样式 常见的函数样式有四种: (1)无参数无返回值 (2)有参数无返回值 (3)无参数有返回值 (4)有参数有返回值 (1)无参数无返回值 示例…...

一个使用 Golang 编写的新一代网络爬虫框架,支持JS动态内容爬取
大家好,今天给大家分享一个由ProjectDiscovery组织开发的开源“下一代爬虫框架”Katana,旨在提供高效、灵活且功能丰富的网络爬取体验,适用于各种自动化管道和数据收集任务。 项目介绍 Katana 是 ProjectDiscovery 精心打造的命令行界面&…...
深入探讨 Vue.js 的动态组件渲染与性能优化
Vue.js 作为一款前端领域中备受欢迎的渐进式框架,以其简单优雅的 API 和灵活性受到开发者的喜爱。在开发复杂应用时,动态组件渲染是一项极其重要的技术,它能够在页面中动态地加载或切换组件,从而显著提升应用的灵活性与用户体验。…...

vulnhub靶场【IA系列】之Tornado
前言 靶机:IA-Tornado,IP地址为192.168.10.11 攻击:kali,IP地址为192.168.10.2 都采用虚拟机,网卡为桥接模式 本文所用靶场、kali镜像以及相关工具,我放置在网盘中,可以复制后面链接查看 htt…...

简要认识JAVAWeb技术三剑客:HTMLCSSJavaScript
目录 一、web标准二、什么是HTML三、什么是CSS四、什么是JavaScript 黑马JAVAWeb飞书在线讲义地址: https://heuqqdmbyk.feishu.cn/wiki/LYVswfK4eigRIhkW0pvcqgH9nWd 一、web标准 Web标准也称网页标准,由一系列的标准组成,大部分由W3C&…...

C# 修改项目类型 应用程序程序改类库
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…...

卡通风格渲染
1、卡通风格渲染是什么 卡通风格渲染(Cartoon Shading),也称为非真实感渲染(NPR)或卡通渲染(Toon Shading) 主要目的是使3D模型看起来更像手绘的二维卡通或漫画风格,而不是逼真写实…...
ubuntu各分区的用途
在 Ubuntu 中,分区是将硬盘划分为多个逻辑部分的过程,每个分区可以用于不同的用途。合理分区可以提高系统性能、数据安全性和管理效率。以下是 Ubuntu 中常见分区及其用途的详细说明: 1. 根分区 (/) 用途:存放操作系统核心文件、…...

理解STC15F2K60S2单片机的最小电路
一、STC15F2K60S2与51单片机的区别 STC15F2K60S2和51单片机虽然都基于8051内核,但在多个方面存在显著区别: 1. CPU性能: - STC15F2K60S2:采用增强型8051 CPU,1T单时钟/机器周期,速度比普通8051快8-12倍…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...