当前位置: 首页 > news >正文

【Python通过UDP协议传输视频数据】(界面识别)

提示:界面识别项目


前言

随着网络通信技术的发展,视频数据的实时传输在各种场景中得到了广泛应用。UDP(User Datagram Protocol)作为一种无连接的协议,凭借其低延迟、高效率的特性,在实时性要求较高的视频传输任务中得到了较多使用。本文将结合界面识别项目的实际需求,介绍如何通过Python实现基于UDP协议的视频数据传输。


提示:以下是本篇文章正文内容,具体实现可以参考以下步骤。

一、UDP协议简介

UDP 是一种无连接的传输层协议,与 TCP 相比,它更加轻量,主要特点包括:

  • 无需建立连接,发送数据更加快速。
  • 不保证数据顺序和完整性,适用于实时性要求较高而可靠性要求较低的场景,例如视频流、实时语音通信等。

二、实现步骤

1.引入库

代码如下(示例):

import socket
import os

2.服务器端实现

服务器端接收并显示从客户端传输的视频数据。代码如下:

import socketBUFFER_SIZE = 65507  # UDP最大数据包大小
SERVER_PORT = 5026  # 服务端端口
OUTPUT_FILE = "received_file.mp4"  # 保存接收文件的路径def receive_file(server_port):sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)sock.bind(("", server_port))print(f"Server is listening on port {server_port}...")with open(OUTPUT_FILE, "wb") as f:while True:data, addr = sock.recvfrom(BUFFER_SIZE)# 如果接收到 "END" 标志,表示文件传输结束if data == b"END":print("File reception completed.")break# 写入接收到的数据块f.write(data)sock.close()if __name__ == "__main__":receive_file(SERVER_PORT)

3.客户端实现

客户端从本地摄像头采集视频数据并通过UDP发送到服务器端。代码如下:

import socket
import osBUFFER_SIZE = 65507  # UDP最大数据包大小
SERVER_IP = "192.168.27.30"  # 服务端IP地址(请根据实际情况修改)
SERVER_PORT = 5026  # 服务端端口def send_file(file_path, server_ip, server_port):sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)# 获取文件大小file_size = os.path.getsize(file_path)print(f"Sending file {file_path} ({file_size} bytes) to {server_ip}:{server_port}...")with open(file_path, "rb") as f:# 读取文件并分块发送while True:file_data = f.read(BUFFER_SIZE)if not file_data:breaksock.sendto(file_data, (server_ip, server_port))# 发送文件传输结束标志sock.sendto(b"END", (server_ip, server_port))sock.close()print(f"File {file_path} sent successfully.")if __name__ == "__main__":file_path = input("Enter the path to the file you want to send: ").strip()send_file(file_path, SERVER_IP, SERVER_PORT)


4.运行效果

服务端等待客户端传输数据

客户端等待输入文件名

输入文件名后,传输成功

同时服务端显示文件接收成功:

在服务端程序同级目录下生成传输好的名为

received_file.mp4

文件:


总结

通过本文,我们学习了如何使用Python基于UDP协议实现视频数据的实时传输,了解了UDP的优势及其适用场景。在实际项目中,可以根据具体需求对代码进行优化,例如添加丢包处理机制、调整视频压缩参数等,以提升传输效率和视频质量。

希望本文对您有所帮助,如果有任何疑问或建议,欢迎在评论区留言!

相关文章:

【Python通过UDP协议传输视频数据】(界面识别)

提示:界面识别项目 前言 随着网络通信技术的发展,视频数据的实时传输在各种场景中得到了广泛应用。UDP(User Datagram Protocol)作为一种无连接的协议,凭借其低延迟、高效率的特性,在实时性要求较高的视频…...

【伪随机数】关于排序算法自测如何生成随机数而引发的……

以 Random 开始 可能一开始&#xff0c;你只是写到了排序算法如何生成随机数 public static void main(String[] args) {Random random new Random();int[] nums new int[10];for (int i 0; i < nums.length; i) {nums[i] random.nextInt(100);}System.out.println(&q…...

核密度估计(Kernel Density Estimation, KDE)是一种非参数统计方法

一、核密度估计 核密度估计&#xff08;Kernel Density Estimation, KDE&#xff09;是一种非参数统计方法&#xff0c;用于估计随机变量的概率密度函数。它通过将每个数据点周围的核函数叠加&#xff0c;生成平滑的密度曲线。以下是其核心要点&#xff1a; 1. 基本概念 非参…...

【k8s面试题2025】2、练气初期

在练气初期&#xff0c;灵气还比较稀薄&#xff0c;只能勉强在体内运转几个周天。 文章目录 简述k8s静态pod为 Kubernetes 集群移除新节点&#xff1a;为 K8s 集群添加新节点Kubernetes 中 Pod 的调度流程 简述k8s静态pod 定义 静态Pod是一种特殊类型的Pod&#xff0c;它是由ku…...

栈溢出原理

文章目录 前言一、基本示例二、分析栈1. 先不考虑gets函数的栈情况2. 分析gets函数的栈区情况 三、利用栈1. 构造字符串2. 利用漏洞 前言 栈溢出指的是程序向栈中某个变量中写入的字节数超过了这个变量本身所申请的字节数&#xff0c;因而导致与其相邻的栈中的变量的值被改变。…...

Jmeter如何进行多服务器远程测试

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 JMeter是Apache软件基金会的开源项目&#xff0c;主要来做功能和性能测试&#xff0c;用Java编写。 我们一般都会用JMeter在本地进行测试&#xff0c;但是受到单…...

2.slf4j入口

文章目录 一、故事引入二、原理探究三、SLF4JServiceProvider四、总结 一、故事引入 故事要从下面这段代码说起 public class App {private static final Logger logger LoggerFactory.getLogger(App.class);public static void main( String[] args ) throws Exception {lo…...

初学stm32 --- CAN

目录 CAN介绍 CAN总线拓扑图 CAN总线特点 CAN应用场景 CAN物理层 CAN收发器芯片介绍 CAN协议层 数据帧介绍 CAN位时序介绍 数据同步过程 硬件同步 再同步 CAN总线仲裁 STM32 CAN控制器介绍 CAN控制器模式 CAN控制器模式 CAN控制器框图 发送处理 接收处理 接收过…...

软件测试—接口测试面试题及jmeter面试题

一&#xff0c;接口面试题 1.接口的作用 实现前后端的交互&#xff0c;实现数据的传输 2.什么是接口测试 接口测试就是对系统或组件之间的接口进行测试&#xff0c;主要是校验数据的交换、传递和控制管理过程&#xff0c;以及相互逻辑关系 3.接口测试必要性 1.可以发现很…...

图论的起点——七桥问题

普瑞格尔河从古堡哥尼斯堡市中心流过&#xff0c;河中有小岛两座&#xff0c;筑有7座古桥&#xff0c;哥尼斯堡人杰地灵&#xff0c;市民普遍爱好数学。1736年&#xff0c;该市一名市民向大数学家Euler提出如下的所谓“七桥问题”&#xff1a; 从家里出发&#xff0c;7座桥每桥…...

嵌入式开发通讯协议大全(在写中)

目录 modbus RTU通讯协议&#xff1a; pmbus通讯协议&#xff1a; modbus RTU通讯协议&#xff1a; 主要应用功能&#xff1a; 规范了软件变量&#xff0c;访问功能码&#xff0c;给不同工程师开发的不同产品有统一的通讯标准 帧结构简单&#xff0c;占用带宽少&#xff0c…...

webpack 4 升级 webpack 5

升级至最新的 webpack 和 webpack-cli npm run build 报错&#xff0c; unknown option -p 解决方案&#xff1a; 改成 --mode production npm run build 报错 unknown option --hide-modules 解决方案&#xff1a;直接移除 npm run build 报错&#xff1a;TypeError: Cannot a…...

oneplus3t-lineageos-16.1编译-android9, oneplus3t-lineage-14编译-android7

oneplus3t-lineage-14编译-android7 1 清华linageos镜像 x lineage-14.1-20180223-nightly-oneplus3-signed.zip ntfs分区挂载为普通用户目录 , ext4分区挂载为普通用户目录 bfsu/lineageOS镜像 ts/lingeageOS镜像 oneplus3/lineage-build-simple-manual.md, manifest-p…...

HTML中最基本的东西

本文内容的标签&#xff0c;将是看懂HTML的最基本之基本 &#xff0c;是跟您在写文章时候一样内容。一般想掌握极其容易&#xff0c;但是也要懂得如何使用&#xff0c;过目不忘&#xff0c;为手熟尔。才是我们学习的最终目的。其实边看边敲都行&#xff0c;或者是边看边复制粘贴…...

<OS 有关>Ubuntu 24 安装 openssh-server, tailscale+ssh 慢增加

更新日志&#xff1a; Created on 14Jan.2025 by Dave , added openssh-server, tailescape Updated on 15Jan.2025, added "tailescape - tailscape ssh" 前期准备&#xff1a; 1. 更新可用软件包的数据库 2. 升级系统中所有已安装的软件包到最新版本 3. 安装 cur…...

神经网络常见操作(卷积)输入输出

卷积 dimd的tensor可以进行torch.nn.Convnd(in_channels,out_channels),其中nd-1,d-2对于torch.nn.Convnd(in_channels,out_channels)&#xff0c;改变的是tensor的倒数n1维的大小 全连接 使用torch.nn.Linear(in_features,out_features,bias)实现YXWT b,其中X 的形状为 (ba…...

25/1/16 嵌入式笔记 STM32F108

输入捕获 TIM_TimeBaseInitTypeDef TIM_TimeBaseStruct; TIM_TimeBaseStruct.TIM_Period 0xFFFF; // 自动重装载值 TIM_TimeBaseStruct.TIM_Prescaler 71; // 预分频值 TIM_TimeBaseStruct.TIM_ClockDivision 0; TIM_TimeBaseStruct.TIM_CounterMode TIM_CounterMode_Up…...

mac 安装 node

brew versions node // 安装 node brew versions node14 // 安装指定版本 卸载node: sudo npm uninstall npm -g sudo rm -rf /usr/local/lib/node /usr/local/lib/node_modules /var/db/receipts/org.nodejs.* sudo rm -rf /usr/local/include/node /Users/$USER/.npm su…...

mysql常用运维命令

mysql常用运维命令 查看当前所有连接 -- 查看当前所有连接 SHOW FULL PROCESSLIST;说明&#xff1a; 关注State状态列&#xff0c;是否有锁。如果大量状态是waiting for handler commit检查磁盘是否占满关注Time耗时列&#xff0c;是否有慢查询关注Command列&#xff0c;如果…...

正则表达式学习网站

网上亲测好用的网站&#xff1a; Regexlearn 这个网站可以从0开始教会正则表达式的使用。 mklab 包含常用表达式&#xff0c;车次&#xff0c;超链接&#xff0c;号码等提取。...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...