【大数据】机器学习------支持向量机(SVM)
支持向量机的基本概念和数学公式:
1. 线性可分的支持向量机
对于线性可分的数据集
,其中(x_i \in R^d) 是特征向量
是类别标签,目标是找到一个超平面

,使得对于所有
的样本

,对于所有(y_i = -1) 的样本,(w^T x_i + b \leq -1)。
间隔(M)定义为:
目标是最大化间隔,即最小化(\frac{1}{2}|w|^2),同时满足

2. 对偶问题
通过引入拉格朗日乘子(\alpha_i\geq 0),原问题的拉格朗日函数为:

对偶问题通过对(L)求(w)和(b)的偏导数并令其为(0)得到:


对偶问题是最大化

约束条件为
3. 核函数
核函数
,将数据映射到高维空间。常见的核函数有:
-
线性核:
-

-
多项式核:

-
径向基函数(RBF)核:

4. 软间隔与正则化
引入松弛变量(\xi_i\geq 0),目标函数变为:

约束条件为


5. 支持向量回归(SVR)
对于回归问题,引入(\epsilon)-不敏感损失函数,目标是找到(w) 和(b) 使得:

约束条件为


代码示例(使用 Python 和 scikit-learn 库):
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC, SVR
from sklearn.metrics import accuracy_score, mean_squared_error
import numpy as np# 生成示例数据集
X, y = datasets.make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=42)
y[y == 0] = -1 # 将类别标签转换为 -1 和 1# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 线性 SVM 分类器
svm_classifier = SVC(kernel='linear', C=1.0)
svm_classifier.fit(X_train, y_train)
y_pred = svm_classifier.predict(X_test)
print("线性 SVM 分类准确率:", accuracy_score(y_test, y_pred))# 多项式核 SVM 分类器
svm_poly_classifier = SVC(kernel='poly', degree=3, C=1.0)
svm_poly_classifier.fit(X_train, y_train)
y_pred_poly = svm_poly_classifier.predict(X_test)
print("多项式核 SVM 分类准确率:", accuracy_score(y_test, y_pred_poly))# RBF 核 SVM 分类器
svm_rbf_classifier = SVC(kernel='rbf', gamma=0.7, C=1.0)
svm_rbf_classifier.fit(X_train, y_train)
y_pred_rbf = svm_rbf_classifier.predict(X_test)
print("RBF 核 SVM 分类准确率:", accuracy_score(y_test, y_pred_rbf))# 生成回归数据集
X_reg, y_reg = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
X_train_reg, X_test_reg, y_train_reg, y_test_reg = train_test_split(X_reg, y_reg, test_size=0.3, random_state=42)# 支持向量回归
svr = SVR(kernel='rbf', C=1.0, epsilon=0.2)
svr.fit(X_train_reg, y_train_reg)
y_pred_reg = svr.predict(X_test_reg)
print("SVR 均方误差:", mean_squared_error(y_test_reg, y_pred_reg))

代码解释:
datasets.make_classification:生成分类数据集。
train_test_split:将数据集划分为训练集和测试集。SVC:支持向量分类器,可指定不同的核函数(linear、poly、rbf等)和正则化参数C。accuracy_score:计算分类准确率。datasets.make_regression:生成回归数据集。SVR:支持向量回归,可指定核函数、正则化参数C和(\epsilon) 参数。mean_squared_error:计算均方误差。
手动实现 SVM 分类器(简化版):
import numpy as npdef linear_kernel(x1, x2):return np.dot(x1, x2)def train_svm(X, y, C=1.0, max_iter=1000, tol=1e-3, kernel=linear_kernel):n_samples, n_features = X.shapealpha = np.zeros(n_samples)b = 0eta = 0L = 0H = 0for iteration in range(max_iter):num_changed_alphas = 0for i in range(n_samples):Ei = np.sum(alpha * y * kernel(X, X[i])) + b - y[i]if (y[i] * Ei < -tol and alpha[i] < C) or (y[i] * Ei > tol and alpha[i] > 0):j = np.random.choice([k for k in range(n_samples) if k!= i])Ej = np.sum(alpha * y * kernel(X, X[j])) + b - y[j]alpha_i_old = alpha[i]alpha_j_old = alpha[j]if y[i] == y[j]:L = max(0, alpha[j] + alpha[i] - C)H = min(C, alpha[j] + alpha[i])else:L = max(0, alpha[j] - alpha[i])H = min(C, C + alpha[j] - alpha[i])if L == H:continueeta = 2 * kernel(X[i], X[j]) - kernel(X[i], X[i]) - kernel(X[j], X[j])if eta >= 0:continuealpha[j] -= y[j] * (Ei - Ej) / etaalpha[j] = np.clip(alpha[j], L, H)if abs(alpha[j] - alpha_j_old) < tol:continuealpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j])b1 = b - Ei - y[i] * (alpha[i] - alpha_i_old) * kernel(X[i], X[i]) - y[j] * (alpha[j] - alpha_j_old) * kernel(X[i], X[j])b2 = b - Ej - y[i] * (alpha[i] - alpha_i_old) * kernel(X[i], X[j]) - y[j] * (alpha[j] - alpha_j_old) * kernel(X[j], X[j])if 0 < alpha[i] < C:b = b1elif 0 < alpha[j] < C:b = b2else:b = (b1 + b2) / 2num_changed_alphas += 1if num_changed_alphas == 0:breakreturn alpha, bdef predict_svm(X, alpha, b, X_train, y_train, kernel=linear_kernel):n_samples = X.shape[0]y_pred = []for i in range(n_samples):pred = np.sum(alpha * y_train * kernel(X_train, X[i])) + by_pred.append(np.sign(pred))return np.array(y_pred)# 示例使用
X = np.array([[1, 2], [2, 3], [3, 4], [6, 7], [7, 8], [8, 9]])
y = np.array([1, 1, 1, -1, -1, -1])
alpha, b = train_svm(X, y, C=1.0)
y_pred = predict_svm(X, alpha, b, X, y)
print("手动实现 SVM 预测结果:", y_pred)

代码解释:
linear_kernel:定义线性核函数。
train_svm:使用 SMO(Sequential Minimal Optimization)算法训练 SVM,更新拉格朗日乘子(\alpha) 和偏置(b)。predict_svm:使用训练好的(\alpha) 和(b) 进行预测。

相关文章:
【大数据】机器学习------支持向量机(SVM)
支持向量机的基本概念和数学公式: 1. 线性可分的支持向量机 对于线性可分的数据集 ,其中(x_i \in R^d) 是特征向量 是类别标签,目标是找到一个超平面 ,使得对于所有 的样本 ,对于所有(y_i -1) 的样本,…...
Android系统开发(八):从麦克风到扬声器,音频HAL框架的奇妙之旅
引言:音浪太强,我稳如老 HAL! 如果有一天你的耳机里传来的不是《咱们屯里人》,而是金属碰撞般的杂音,那你可能已经感受到了 Android 音频硬件抽象层 (HAL) 出问题的后果!在 Android 音频架构中,…...
Golang Gin系列-2:搭建Gin 框架环境
开始网络开发之旅通常是从选择合适的工具开始的。在这个全面的指南中,我们将引导你完成安装Go编程语言和Gin框架的过程,Gin框架是Go的轻量级和灵活的web框架。从设置Go工作空间到将Gin整合到项目中,本指南是高效而强大的web开发路线图。 安装…...
FGC_grasp复现
复现FGC_grasp 环境配置数据集准备RuntimeError: CUDA error: invalid device ordinal 问题的解决方案raise BadZipFile("File is not a zip file") zipfile.BadZipFile: File is not a zip file问题的解决方案加载数据集时总是被kill然后服务器也卡住了动不了问题的…...
实力认证 | 海云安入选《信创安全产品及服务购买决策参考》
近日,国内知名安全调研机构GoUpSec发布了2024年中国网络安全行业《信创安全产品及服务购买决策参考》,报告从产品特点、产品优势、成功案例、安全策略等维度对各厂商信创安全产品及服务进行调研了解。 海云安凭借AI大模型技术在信创安全领域中的创新应用…...
Avalonia系列文章之小试牛刀
最近有朋友反馈,能否分享一下Avalonia相关的文章,于是就抽空学习了一下,发现Avalonia真的是一款非常不错的UI框架,值得花时间认真学习一下,于是边学习边记录,整理成文,分享给大家,希…...
中国数字安全产业年度报告(2024)
数字安全是指,在全球数字化背景下,合理控制个人、组织、国家在各种活动中面临的数字风险,保障数字社会可持续发展的政策法规、管理措施、技术方法等安全手段的总和。 数字安全领域可从三个方面对应新质生产力的三大内涵:一是基于大型语言模型…...
LabVIEW桥接传感器配置与数据采集
该LabVIEW程序主要用于配置桥接传感器并进行数据采集,涉及电压激励、桥接电阻、采样设置及错误处理。第一个VI("Auto Cleanup")用于自动清理资源,建议保留以确保系统稳定运行。 以下是对图像中各个组件的详细解释&#…...
简明docker快速入门并实践方法
简明docker快速入门并实践方法 前言:1. 什么是Docker?2. Docker的基本概念3. 安装配置Docker4. Docker基本命令:5. 简单实践:拉取Nginx镜像-自定义配置-推送镜像步骤 1:拉取Nginx镜像步骤 1.5(可选…...
《MambaIR:一种基于状态空间模型的简单图像修复基线方法》学习笔记
paper:2402.15648 目录 摘要 一、引言 1、模型性能的提升依赖于网络感受野的扩大: 2、全局感受野和高效计算之间存在固有矛盾: 3、改进版 Mamba的巨大潜力 4、Mamba 在图像修复任务中仍面临以下挑战: 5、方法 6、主要贡献…...
链式前向星的写法
【图论02】动画说图的三种保存方式 降低理解门槛 邻接表 链式前向星 邻接矩阵_哔哩哔哩_bilibili 杭电ACM刘老师-算法入门培训-第12讲-拓扑排序及链式前向星_哔哩哔哩_bilibili 图论003链式前向星_哔哩哔哩_bilibili(链式前向星的遍历) head数组的下标…...
【逆境中绽放:万字回顾2024我在挑战中突破自我】
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:“没有罗马,那就自己创造罗马~” 文章目录 一、引言二、个人成长与盘点情感与心理成长学习与技能提升其它荣誉 三、年度创作历程回顾创作内容概…...
尺取法(算法优化技巧)
问题和序列的区间有关,且需要操作两个变量,可以用两个下标(指针)i 和 j 扫描区间。 1,反向扫描,i 从头,j 从尾,在中间相遇。 例1.1(P37) 找指定和的整数对…...
基于 K-Means 聚类分析实现人脸照片的快速分类
注:本文在创作过程中得到了 ChatGPT、DeepSeek、Kimi 的智能辅助支持,由作者本人完成最终审阅。 在 “视频是不能 P 的” 系列文章中,博主曾先后分享过人脸检测、人脸识别等相关主题的内容。今天,博主想和大家讨论的是人脸分类问题。你是否曾在人群中认错人,或是盯着熟人的…...
【漏洞预警】FortiOS 和 FortiProxy 身份认证绕过漏洞(CVE-2024-55591)
文章目录 一、产品简介二、漏洞描述三、影响版本四、漏洞检测方法五、解决方案 一、产品简介 FortiOS是Fortinet公司核心的网络安全操作系统,广泛应用于FortiGate下一代防火墙,为用户提供防火墙、VPN、入侵防御、应用控制等多种安全功能。 FortiProxy则…...
7.5.4 MVCC优化测试
作者: h5n1 原文来源: https://tidb.net/blog/4e02d900 1. 背景 由于MVCC 版本数量过多导致rocksdb扫描key数量过多影响SQL执行时间是tidb经常出现问的问题,tidb也一直在致力于优化该问题。 一些优化方式包括比: (1) 从传统…...
STM32 FreeRTOS 事件标志组
目录 事件标志组简介 基本概念 1、事件位(事件标志) 2、事件组 事件组和事件位数据类型 事件标志组和信号量的区别 事件标志组相关API函数介绍 事件标志组简介 基本概念 当在嵌入式系统中运行多个任务时,这些任务可能需要相互通信&am…...
生成树机制实验
1 实验内容 1、基于已有代码,实现生成树运行机制,对于给定拓扑(four_node_ring.py),计算输出相应状态下的生成树拓扑 2、构造一个不少于7个节点,冗余链路不少于2条的拓扑,节点和端口的命名规则可参考four_node_ring.py,使用stp程序计算输出生成树拓扑 2 实验原理 一、…...
企业分类相似度筛选实战:基于规则与向量方法的对比分析
文章目录 企业表相似类别筛选实战项目背景介绍效果展示基于规则的效果基于向量相似的效果 说明相关文章推荐 企业表相似类别筛选实战 项目背景 在当下RAG(检索增强生成)技术应用不断发展的背景下,掌握文本相似算法不仅能够助力信息检索&…...
2024年博客之星年度评选—创作影响力评审入围名单公布
2024年博客之星活动地址https://www.csdn.net/blogstar2024 TOP 300 榜单排名 用户昵称博客主页 身份 认证 评分 原创 博文 评分 平均 质量分评分 互动数据评分 总分排名三掌柜666三掌柜666-CSDN博客1001002001005001wkd_007wkd_007-CSDN博客1001002001005002栗筝ihttps:/…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
