当前位置: 首页 > news >正文

【FPGA】MIPS 12条整数指令【1】

目录

 修改后的仿真结果

修改后的完整代码 


实现bgtz、bltz、jalr

仿真结果(有问题)

bltz------并未跳转,jCe?

原因是该条跳转语句判断的寄存器r7,在该时刻并未被赋值

代码(InstMem修改前)

`include "define.v"
module InstMem(input wire ce,input wire [31:0] addr,output reg [31:0] data
);reg [31:0] instmem [1023 : 0];    always@(*)      if(ce == `RomDisable)data = `Zero;elsedata = instmem[addr[11 : 2]];   initialbegininstmem [0] = 32'h34011100;   //ori r1,r0,1100h         r1--32'h0000 1100instmem [1] = 32'h34020020;   //ori r2,r0,0020h		r2--32'h0000 0020instmem [2] = 32'h3403ff00;   //ori r3,r0,ff00h		r3--32'h0000 ff00instmem [3] = 32'h3404ffff;   //ori r4,r0,ffffh		r4--32'h0000 ffff
/*	instmem [4] = 32'h3005ffff;	//andi r5,r0,ffff	r5--32'h0000 0000instmem [5] = 32'h3806ffff;	//xori r6,r0,ffff	r6--32'h0000 ffffinstmem [6] = 32'h2007ffff;	//addi r7,r0,ffff	r7--32'hffff ffffinstmem [7] = 32'h3c081234;     //lui r8,1234		r8--32'h1234 0000instmem [8] = 32'h35095679;     //ori r9,r8,5678	r9--32'h1234 5679instmem [9] = 32'h212aa011;     //addi r10,r9,a011	r10--32'h1233 f68ainstmem [10] = 32'h306b1111;	//andi r11,r3,1111	r10--32'h0000 1100instmem [11] = 32'h254C1111;    //subi r12,r10,1111     r12--32'h1234 e579
*/
/*instmem [4] = 32'h00222820;     //add r5,r1,r2		r5--32'h0000 1120instmem [5] = 32'h00223025;	//or r6,r1,r2		r6--32'h0000 1120instmem [6] = 32'h00223822;	//sub r7,r1,r2		r7--32'h0000 10e0instmem [7] = 32'h00224024;	//and r8,r1,r2		r8--32'h0000 0000instmem [8] = 32'h00224826;	//xor r9,r1,r2		r9--32'h0000 1120instmem [9] =32'h3c0affff;	//lui r10,ffff		r10--32'hffff 0000instmem [10] = 32'h000a5840;	//sll r11,ra,r10	r11--32'hfffe 0000instmem [11] = 32'h000a6042;	//srl,r12,ra,r10	r12--32'h7fff 8000instmem [12] = 32'h000a6843;	//sra r13,ra,r10	r13--32'hffff 8000*/	instmem [4] = 32'b000000_00001_00010_00101_00000_100000;//add,R5,R1,R2  00001120instmem [5] = 32'h3405ffff;   //ori r5,r0,ffffh		r4--32'h0000 ffff//instmem [5] = 32'b000000_00001_00010_00110_00000_100101;//or,R6,R1,R2   00001120instmem [6] = 32'b000000_00011_00100_00111_00000_101010;//slt r7,r3,r4instmem [7] = 32'b000111_00101_00000_0000000000000001;//bgtz r5,1instmem [8] = 32'b000000_00001_00010_00111_00000_101010;//slt r7,r1,r2instmem [9] = 32'h2007ffff;	//addi r7,r0,ffff	r7--32'hffff ffff//instmem [10] = 32'b000001_00111_00000_1111111111111101;//bltz r7,-3  instmem [10] = 32'b000001_00111_00000_1111111111111010;//bltz r7,-6instmem [11] = 32'h34010000;   //ori r1,r0,00hinstmem [12] = 32'b000000_00001_00000_01000_00000_001001;//jalr r8,r1//(r1)=0000 1100//    +0000 0018//addr=0000 1118  //    =1000100011000 //    =100 0100 0110 //	  =446H	        //    =46H		    //    =70//mem[70]=(r6)/*instmem[6]=32'b101011_00001_00110_0000_0000_0001_1000; //sw r6,0x18(r1)instmem[7]=32'b100011_00001_00111_0000_0000_0001_1000; //lw r7,0x18(r1)*///(r7)=mem[70]end
endmodule

 修改后的仿真结果

bgtz、bltz

                                        PC

ori r1,r0,1100h                00h

ori r2,r0,0020h                04h

ori r3,r0,ff00h                  08h

ori r4,r0,ffffh                    0ch

add r5,r1,r2                     10h

ori r5,r0,ffffh                     14h

or r6,r2,r3                        18h

bgtz r5,1                          1ch

or r6,r1,r2                        20h

addi r7,r0,ffffh                  24h

or r6,r3,r4                        28h

bltz r7,-6                          2ch

PC   1ch->24h        2ch->18h

jalr

                                        PC

ori r1,r0,1100h                00h

ori r2,r0,0020h                04h

ori r3,r0,ff00h                  08h

ori r4,r0,ffffh                    0ch

ori r1,r0,1ch                    10h

jalr r31,r1                        14h

ori r5,r0,ffffh                    18h

add r5,r1,r2                     1ch

jr r31                                20h

14h-->1ch

20h-->18h

修改后的完整代码 

`define RstEnable       1'b1
`define RstDisable      1'b0
`define RomEnable       1'b1 
`define RomDisable      1'b0
`define Zero	        0
`define Valid	        1'b1
`define Invalid	        1'b0
//I
`define Inst_ori   	6'b001101
`define Inst_addi  	6'b001000
`define Inst_andi  	6'b001100
`define Inst_xori  	6'b001110
`define Inst_lui   	6'b001111
`define Inst_subi  	6'b001001//lw sw
`define Inst_lw 	6'b100011
`define Inst_sw 	6'b101011//beq bne
`define Inst_beq  	6'b000100
`define Inst_bne  	6'b000101//R
`define Inst_r    	6'b000000
`define Inst_add  	6'b100000
`define Inst_sub  	6'b100010
`define Inst_and	6'b100100
`define Inst_or    	6'b100101
`define Inst_xor   	6'b100110
`define Inst_sll   	6'b000000
`define Inst_srl   	6'b000010
`define Inst_sra   	6'b000011`define Inst_jr    	6'b001000
//J
`define Inst_j   	6'b000010
`define Inst_jal 	6'b000011//12条整数指令
`define Inst_slt	6'b101010
`define Inst_bgtz	6'b000111
`define Inst_bltz	6'b000001
`define Inst_jalr	6'b001001
`define Inst_mult	6'b011000
`define Inst_multu	6'b011001
`define Inst_div	6'b011010
`define Inst_divu	6'b011011
`define Inst_mfhi	6'b010000
`define Inst_mflo	6'b010010
`define Inst_mthi	6'b010001
`define Inst_mtlo	6'b010011//中断
`define Inst_ll		6'b110000
`define Inst_sc		6'b111000
`define Inst_mfc0	6'b000000
`define Inst_mtc0	6'b000000
`define Inst_eret	6'b011000
`define syscall		6'b001100`define Nop     	6'b000000
`define Or      	6'b000001
`define Add		6'b000010
`define And		6'b000011
`define Xor		6'b000100
`define Lui		6'b000101
`define Sub     	6'b000110
`define Sll     	6'b000111
`define Srl     	6'b001000
`define Sra		6'b001001
`define J		6'b001010
`define Jal		6'b001011
`define Beq		6'b001100
`define Bne		6'b001101
`define Jr		6'b001110
`define Lw  		6'b010000
`define Sw  		6'b010001
`define Bgtz		6'b010010
`define Bltz		6'b010011//MEM
`define RamWrite 	1'b1
`define RamUnWrite 	1'b0
`define RamEnable 	1'b1
`define RamDisable 	1'b0

`include "define.v"
module EX(input wire rst,//input wire [5:0] op,input wire [5:0] op_i,     input wire [31:0] regaData,input wire [31:0] regbData,input wire regcWrite_i,input wire [4:0]regcAddr_i,output reg [31:0] regcData,output wire regcWrite,output wire [4:0] regcAddr,output wire [5:0] op,output wire [31:0] memAddr,output wire [31:0] memData
);    assign op = op_i;assign memAddr = regaData;assign memData = regbData;always@(*)if(rst == `RstEnable)regcData = `Zero;elsebegin//case(op)case(op_i)`Or:regcData = regaData | regbData;`Add:regcData = regaData + regbData;`And:regcData = regaData & regbData;`Xor:regcData = regaData ^ regbData;`Lui:regcData = regaData;/*`Lui:regcData = regaData | regbData;*/`Sub:regcData = regaData - regbData;`Sll:regcData = regbData << regaData;`Srl:regcData = regbData >> regaData;`Sra:regcData = ($signed(regbData)) >>> regaData;`J:regcData = `Zero;`Jr:regcData = `Zero;`Jal:regcData = regbData;`Beq:regcData = `Zero;`Bne:regcData = `Zero;`Bltz:regcData = `Zero;`Bgtz:regcData = `Zero;default:regcData = `Zero;endcaseendassign regcWrite = regcWrite_i;assign regcAddr = regcAddr_i;
endmodule

`include "define.v";
module  ID (input wire rst,    input wire [31:0] pc,   //Jinput wire [31:0] inst,input wire [31:0] regaData_i,input wire [31:0] regbData_i,output reg [5:0] op,    output reg [31:0] regaData,output reg [31:0] regbData,output reg regaRead,output reg regbRead,output reg regcWrite,output reg [4:0] regaAddr,output reg [4:0] regbAddr,    output reg [4:0] regcAddr,output reg [31:0] jAddr,   //Joutput reg jCe//J);wire [5:0] inst_op = inst[31:26];   reg [31:0] imm;//Rwire[5:0] func = inst[5:0]; //Jwire [31:0] npc = pc + 4;always@(*)if(rst == `RstEnable)beginop = `Nop;            regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Invalid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = `Zero;imm    = `Zero;jCe = `Invalid;//JjAddr = `Zero;//Jendelse beginjCe = `Invalid;//JjAddr = `Zero;//Jcase(inst_op)`Inst_ori:beginop = `Or;                    regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {16'h0, inst[15:0]};end`Inst_andi:beginop = `And;                    regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {16'h0, inst[15:0]};end`Inst_xori:beginop = `Xor;                    regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {16'h0, inst[15:0]};end`Inst_addi:beginop = `Add;                    regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {{16{inst[15]}}, inst[15:0]};end`Inst_subi:beginop = `Sub;                    regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {{16{inst[15]}}, inst[15:0]};end`Inst_lui:beginop = `Lui;                    regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = inst[20:16];imm = {inst[15:0],16'h0};end`Inst_r:case(func)`Inst_add:beginop = `Add;  regaRead = `Valid;regbRead = `Valid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = inst[15:11];imm = `Zero;end`Inst_or:beginop = `Or;regaRead = `Valid;regbRead = `Valid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = inst[15:11];imm = `Zero;end`Inst_sub:beginop = `Sub;regaRead = `Valid;regbRead = `Valid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = inst[15:11];imm = `Zero;end`Inst_and:beginop = `And;regaRead = `Valid;regbRead = `Valid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = inst[15:11];imm = `Zero;end`Inst_xor:beginop = `Xor;regaRead = `Valid;regbRead = `Valid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = inst[15:11];imm = `Zero;end`Inst_sll:beginop = `Sll;regaRead = `Invalid;regbRead = `Valid;regcWrite = `Valid;regaAddr = `Zero;regbAddr = inst[20:16];regcAddr = inst[15:11];imm = {27'b0,inst[10:6]};end`Inst_srl:beginop = `Srl;regaRead = `Invalid;regbRead = `Valid;regcWrite = `Valid;regaAddr = `Zero;regbAddr = inst[20:16];regcAddr = inst[15:11];imm = {27'b0,inst[10:6]};end`Inst_sra:beginop = `Sra;regaRead = `Invalid;regbRead = `Valid;regcWrite = `Valid;regaAddr = `Zero;regbAddr = inst[20:16];regcAddr = inst[15:11];imm = {27'b0,inst[10:6]};end`Inst_jr:beginop = `Jr;regaRead = `Valid;//rsregbRead = `Invalid;regcWrite = `Invalid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = 5'b11111;jAddr = regaData;jCe = `Valid;imm = `Zero;end`Inst_jalr:beginop = `Jal;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[15:11];  //jAddr = regaData;jCe = `Valid;imm = npc;enddefault:beginregaRead = `Invalid;regbRead = `Invalid;regcWrite = `Invalid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = `Zero;imm = `Zero;endendcase//J`Inst_j:beginop = `J;regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Invalid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = `Zero;jAddr = {npc[31:28], inst[25:0], 2'b00};jCe = `Valid;imm = `Zero;end            `Inst_jal:beginop = `Jal;regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = 5'b11111;jAddr = {npc[31:28], inst[25:0], 2'b00};jCe = `Valid;imm = npc;end//J `Inst_beq:beginop = `Beq;regaRead = `Valid;regbRead = `Valid;regcWrite = `Invalid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = `Zero;jAddr = npc+{{14{inst[15]}},inst[15:0],2'b00};jCe=(regaData==regbData)?`Valid:`Invalid; /* if(regaData==regbData)jCe = `Valid;elsejCe = `Invalid;*/imm = `Zero;end      `Inst_bne:beginop = `Bne;regaRead = `Valid;regbRead = `Valid;regcWrite = `Invalid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = `Zero;jAddr = npc+{{14{inst[15]}},inst[15:0],2'b00};jCe=(regaData!=regbData)?`Valid:`Invalid;   /* if(regaData!=regbData)jCe = `Valid;elsejCe = `Invalid;*/imm = `Zero;end      `Inst_bgtz:beginop = `Bgtz;regaRead = `Valid;regbRead = `Valid;//regcWrite = `Invalid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = `Zero;jAddr = npc+{{14{inst[15]}},inst[15:0],2'b00};jCe = (regaData[31]==0)?`Valid:`Invalid;imm = 32'b0;  //end`Inst_bltz:beginop = `Bgtz;regaRead = `Valid;regbRead = `Valid;//regcWrite = `Invalid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = `Zero;jAddr = npc+{{14{inst[15]}},inst[15:0],2'b00};jCe = (regaData[31]==1)?`Valid:`Invalid;  //imm = 32'b0;  //end`Inst_lw:beginop = `Lw;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {{16{inst[15]}},inst[15:0]};end`Inst_sw:beginop = `Sw;regaRead = `Valid;regbRead = `Valid;regcWrite = `Invalid;regaAddr = inst[25:21];regbAddr = inst[20:16];regcAddr = `Zero;imm = {{16{inst[15]}},inst[15:0]};end	default:beginop = `Nop;                    regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Invalid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = `Zero;imm = `Zero;endendcase end/*always@(*)if(rst == `RstEnable)regaData = `Zero;else if(regaRead == `Valid)regaData = regaData_i;else  regaData = imm;always@(*)if(rst == `RstEnable)regbData = `Zero;      else if(regbRead == `Valid)regbData = regbData_i;elseregbData = imm; */
always@(*)      if(rst == `RstEnable)          regaData = `Zero;      else if(op == `Lw || op == `Sw)               regaData = regaData_i + imm;      else if(regaRead == `Valid)          regaData = regaData_i;      else          regaData = imm;    always@(*)      if(rst == `RstEnable)          regbData = `Zero;      else if(regbRead == `Valid)          regbData = regbData_i;      else          regbData = imm;endmodule

`include "define.v"
module IF(input wire clk,input wire rst,input wire [31:0] jAddr,//Jinput wire jCe,//Joutput reg ce, 
output reg [31:0] pc
);always@(*)if(rst == `RstEnable)ce = `RomDisable;elsece = `RomEnable;
/*    always@(posedge clk)if(ce == `RomDisable)pc = `Zero;elsepc = pc + 4;
*/always@(posedge clk)if(ce == `RomDisable)pc = `Zero;else if(jCe == `Valid)//Jpc = jAddr;elsepc = pc + 4;
endmodule

`include "define.v"
module RegFile(input wire clk,input wire rst,input wire we,input wire [4:0] waddr,input wire [31:0] wdata,input wire regaRead,input wire regbRead,input wire [4:0] regaAddr,input wire [4:0] regbAddr,output reg [31:0] regaData,output reg [31:0] regbData
);reg [31:0] reg32 [31 : 0];    always@(*)if(rst == `RstEnable)regaData = `Zero;else if(regaAddr == `Zero)regaData = `Zero;elseregaData = reg32[regaAddr];always@(*)if(rst == `RstEnable)          regbData = `Zero;else if(regbAddr == `Zero)regbData = `Zero;elseregbData = reg32[regbAddr];always@(posedge clk)if(rst != `RstEnable)if((we == `Valid) && (waddr != `Zero))reg32[waddr] = wdata;else ;          
endmodule

`include "define.v";
module DataMem(input wire clk,input wire ce,input wire we,input wire [31:0] addr,input wire [31:0] wtData,output reg [31:0] rdData
);reg [31:0] datamem [1023 : 0];always@(*)      if(ce == `RamDisable)rdData = `Zero;elserdData = datamem[addr[11 : 2]]; always@(posedge clk)if(ce == `RamEnable && we == `RamWrite)datamem[addr[11 : 2]] = wtData;else ;endmodule


`include "define.v";
module MEM(input wire rst,		input wire [5:0] op,input wire [31:0] regcData,input wire [4:0] regcAddr,input wire regcWr,input wire [31:0] memAddr_i,input wire [31:0] memData,	input  wire [31:0] rdData,output wire [4:0]  regAddr,output wire regWr,output wire [31:0] regData,	output wire [31:0] memAddr,output reg [31:0] wtData,output reg memWr,	output reg memCe
);assign regAddr = regcAddr;    assign regWr = regcWr;    assign regData = (op == `Lw) ? rdData : regcData;    assign memAddr = memAddr_i;always @(*)        if(rst == `RstEnable)          begin            wtData = `Zero;            memWr = `RamUnWrite;            memCe = `RamDisable;          end        elsecase(op)                `Lw:                  begin                    wtData = `Zero;                        memWr = `RamUnWrite;                     memCe = `RamEnable;                    end                `Sw:                  begin                    wtData = memData;                    memWr = `RamWrite;                      memCe = `RamEnable;                   enddefault:                  begin                    wtData = `Zero;                    memWr = `RamUnWrite;                    memCe = `RamDisable;                  end            endcase
endmodule
`include "define.v"
module InstMem(input wire ce,input wire [31:0] addr,output reg [31:0] data
);reg [31:0] instmem [1023 : 0];    always@(*)      if(ce == `RomDisable)data = `Zero;elsedata = instmem[addr[11 : 2]];   initialbegininstmem [0] = 32'h34011100;   //ori r1,r0,1100h         r1--32'h0000 1100instmem [1] = 32'h34020020;   //ori r2,r0,0020h		r2--32'h0000 0020instmem [2] = 32'h3403ff00;   //ori r3,r0,ff00h		r3--32'h0000 ff00instmem [3] = 32'h3404ffff;   //ori r4,r0,ffffh		r4--32'h0000 ffff
/*	instmem [4] = 32'h3005ffff;	//andi r5,r0,ffff	r5--32'h0000 0000instmem [5] = 32'h3806ffff;	//xori r6,r0,ffff	r6--32'h0000 ffffinstmem [6] = 32'h2007ffff;	//addi r7,r0,ffff	r7--32'hffff ffffinstmem [7] = 32'h3c081234;     //lui r8,1234		r8--32'h1234 0000instmem [8] = 32'h35095679;     //ori r9,r8,5678	r9--32'h1234 5679instmem [9] = 32'h212aa011;     //addi r10,r9,a011	r10--32'h1233 f68ainstmem [10] = 32'h306b1111;	//andi r11,r3,1111	r10--32'h0000 1100instmem [11] = 32'h254C1111;    //subi r12,r10,1111     r12--32'h1234 e579
*/
/*instmem [4] = 32'h00222820;     //add r5,r1,r2		r5--32'h0000 1120instmem [5] = 32'h00223025;	//or r6,r1,r2		r6--32'h0000 1120instmem [6] = 32'h00223822;	//sub r7,r1,r2		r7--32'h0000 10e0instmem [7] = 32'h00224024;	//and r8,r1,r2		r8--32'h0000 0000instmem [8] = 32'h00224826;	//xor r9,r1,r2		r9--32'h0000 1120instmem [9] =32'h3c0affff;	//lui r10,ffff		r10--32'hffff 0000instmem [10] = 32'h000a5840;	//sll r11,ra,r10	r11--32'hfffe 0000instmem [11] = 32'h000a6042;	//srl,r12,ra,r10	r12--32'h7fff 8000instmem [12] = 32'h000a6843;	//sra r13,ra,r10	r13--32'hffff 8000*/	//instmem [4] = 32'h34010000;   //ori r1,r0,00h//instmem [5] = 32'b000000_00001_00000_01000_00000_001001;//jalr r8,r1instmem [4] = 32'b000000_00001_00010_00101_00000_100000;//add,R5,R1,R2  instmem [5] = 32'h3405ffff;   //ori r5,r0,ffffh		instmem [6] = 32'b000000_00010_00011_00110_00000_100101;//or,R6,R2,R3   instmem [7] = 32'b000111_00101_00000_0000000000000001;//bgtz r5,1instmem [8] = 32'b000000_00001_00010_00110_00000_100101;//or,R6,R1,R2   00001120instmem [9] = 32'h2007ffff;	//addi r7,r0,ffff	r7--32'hffff ffffinstmem [10] = 32'b000000_00011_00100_00110_00000_100101;//or,R6,R3,R4  //instmem [10] = 32'b000001_00111_00000_1111111111111101;//bltz r7,-3  instmem [11] = 32'b000001_00111_00000_1111111111111010;//bltz r7,-6/*instmem [6] = 32'b000000_00011_00100_00111_00000_101010;//slt r7,r3,r4instmem [8] = 32'b000000_00001_00010_00111_00000_101010;//slt r7,r1,r2*///(r1)=0000 1100//    +0000 0018//addr=0000 1118  //    =1000100011000 //    =100 0100 0110 //	  =446H	        //    =46H		    //    =70//mem[70]=(r6)/*instmem[6]=32'b101011_00001_00110_0000_0000_0001_1000; //sw r6,0x18(r1)instmem[7]=32'b100011_00001_00111_0000_0000_0001_1000; //lw r7,0x18(r1)*///(r7)=mem[70]end
endmodule
`include "define.v";
module MIPS(input wire clk,input wire rst,input wire [31:0] instruction,input wire [31:0] rdData,//lsoutput wire romCe,output wire [31:0] instAddr,output wire [31:0] wtData,//lsoutput wire [31:0] memAddr,//lsoutput wire memCe,//lsoutput wire memWr//ls
);wire [31:0] regaData_regFile, regbData_regFile;wire [31:0] regaData_id, regbData_id; wire [31:0] regcData_ex;//wire [5:0] op; wire [5:0] op_id; //ls  wire regaRead, regbRead;wire [4:0] regaAddr, regbAddr;wire regcWrite_id, regcWrite_ex;wire [4:0] regcAddr_id, regcAddr_ex;//Jwire [31:0] jAddr;wire jCe;//lswire [5:0] op_ex;wire[31:0] memAddr_ex,memData_ex;wire [5:0] regAddr_mem;wire [31:0] regData_mem;wire regWr_mem;IF if0(.clk(clk),.rst(rst),.jAddr(jAddr),//J.jCe(jCe),//J.ce(romCe), .pc(instAddr));ID id0(.rst(rst), .pc(instAddr),//J.inst(instruction),.regaData_i(regaData_regFile),.regbData_i(regbData_regFile),//.op(op),.op(op_id),//ls.regaData(regaData_id),.regbData(regbData_id),.regaRead(regaRead),.regbRead(regbRead),.regaAddr(regaAddr),.regbAddr(regbAddr),.regcWrite(regcWrite_id),.regcAddr(regcAddr_id),.jAddr(jAddr),//J.jCe(jCe)//J);EX ex0(.rst(rst),//.op(op),    .op_i(op_id),    .regaData(regaData_id),.regbData(regbData_id),.regcWrite_i(regcWrite_id),.regcAddr_i(regcAddr_id),.regcData(regcData_ex),.regcWrite(regcWrite_ex),.regcAddr(regcAddr_ex),.op(op_ex),//ls.memAddr(memAddr_ex),//ls.memData(memData_ex)//ls);    MEM mem0(.rst(rst),		.op(op_ex),.regcData(regcData_ex),.regcAddr(regcAddr_ex),.regcWr(regcWrite_ex),.memAddr_i(memAddr_ex),.memData(memData_ex),	.rdData(rdData),.regAddr(regAddr_mem),.regWr(regWr_mem),.regData(regData_mem),	.memAddr(memAddr),.wtData(wtData),.memWr(memWr),	.memCe(memCe));RegFile regfile0(.clk(clk),.rst(rst),//.we(regcWrite_ex),.we(regWr_mem),//.waddr(regcAddr_ex),.waddr(regAddr_mem),//.wdata(regcData_ex),.wdata(regData_mem),.regaRead(regaRead),.regbRead(regbRead),.regaAddr(regaAddr),.regbAddr(regbAddr),.regaData(regaData_regFile),.regbData(regbData_regFile));endmodule

module SoC(input wire clk,input wire rst
);wire [31:0] instAddr;wire [31:0] instruction;wire romCe;//lswire memCe, memWr;    wire [31:0] memAddr;wire [31:0] rdData;wire [31:0] wtData;MIPS mips0(.clk(clk),.rst(rst),.instruction(instruction),.instAddr(instAddr),.romCe(romCe),.rdData(rdData),        .wtData(wtData),        .memAddr(memAddr),        .memCe(memCe),        .memWr(memWr) );	InstMem instrom0(.ce(romCe),.addr(instAddr),.data(instruction));//DataMemDataMem datamem0(       .ce(memCe),        .clk(clk),        .we(memWr),        .addr(memAddr),        .wtData(wtData),        .rdData(rdData)  );
endmodule

`include "define.v"
module soc_tb;reg clk;reg rst;initialbeginclk = 0;rst = `RstEnable;#100rst = `RstDisable;#10000 $stop;        endalways #10 clk = ~ clk;SoC soc0(.clk(clk), .rst(rst));
endmodule

相关文章:

【FPGA】MIPS 12条整数指令【1】

目录 修改后的仿真结果 修改后的完整代码 实现bgtz、bltz、jalr 仿真结果&#xff08;有问题&#xff09; bltz------并未跳转&#xff0c;jCe&#xff1f; 原因是该条跳转语句判断的寄存器r7&#xff0c;在该时刻并未被赋值 代码&#xff08;InstMem修改前&#xff09; i…...

Halcon 3D基础知识及常用函数

一、基本概念 1、点云&#xff08;Point Cloud&#xff09; 点云是一组3D数据点&#xff0c;每个点由笛卡尔坐标系或其他坐标系中的一个三维坐标表示&#xff0c;它被认为是一组非结构化的三维点&#xff0c;象征着三维物体的几何形状。点云是一种简单、完整的数据结构&#…...

贵金属铟,钌,铱,钯铂铑回收工艺详解

Tulsimer CH-95S 是一款为了从工业废水中去除回收汞和贵金属而专门开发的螯合树脂。 Tulsimer CH-95S 是一款拥有聚乙烯异硫脲官能基的大孔树脂&#xff0c;这种树脂对汞有极高的选择性。它也选 择其他的贵金属&#xff0c;如黄金&#xff0c;铂金和其他铂金族金属。…...

AutoSAR CP RTE 规范核心内容简介以及BswScheduler工作原理解析

一、Autosar CP RTE规范核心内容简介 本规范详细介绍了AUTOSAR运行时环境&#xff08;RTE&#xff09;和基本软件调度器&#xff08;BswScheduler&#xff09;的软件规范。 研究背景 背景介绍: 这篇文章的研究背景是AUTOSAR&#xff08;Automotive Open System Architecture…...

Python Pyside6 加Sqlite3 写一个 通用 进销存 系统 初型

图: 说明: 进销存管理系统说明文档 功能模块 1. 首页 显示关键业务数据商品总数供应商总数本月采购金额本月销售金额显示预警信息库存不足预警待付款采购单待收款销售单2. 商品管理 商品信息维护商品编码(唯一标识)商品名称规格型号单位分类进货价销售价库存数量预警…...

office 学习

Excel 视图 切片 通过视图进行数据分析 条形格式 函数 countif sumif sumifs 多条件 countifs 多条件...

【三维分割】Gaga:通过3D感知的 Memory Bank 分组任意高斯

文章目录 摘要一、引言二、主要方法2.1 3D-aware Memory Bank2.2 三维分割的渲染与下游应用 三、实验消融实验应用: Scene Manipulation 地址&#xff1a;https://www.gaga.gallery 标题&#xff1a;Gaga: Group Any Gaussians via 3D-aware Memory Bank 来源&#xff1a;加利福…...

期权懂|明日股指期货交割日该如何操作?

锦鲤三三每日分享期权知识&#xff0c;帮助期权新手及时有效地掌握即市趋势与新资讯&#xff01; 明日股指期货交割日该如何操作&#xff1f; 一、需要确认股指期货交割日&#xff1a; 查查看明日是否为交割日&#xff0c;别忘了关注交易所公告&#xff0c;以免错过。 二、需要…...

大牙的2024年创作总结

文章目录 一、自动驾驶通讯协议的学习心得二、PyTorch框架应用的心得体会三、大规模语言模型&#xff08;LLM&#xff09;的研究心得四、神经网络架构与实战经验五、我的年度文章六、未来展望与个人成长 引言 2024年是我个人在深度学习和自动驾驶领域不断探索、实践并取得显著…...

AI软件栈:中间表示

概念 编译器通常可以分为前端、优化器和后端三个部分中间表示属于变异过程中表达源程序的方法,作为单独的表示语言。将不同的前端语言(例如C、python、Java等)描述转换为中间表示。优化器对中间表示进行转换和优化,输出新的中间表示。后端将优化后的中间表示转换为特定硬件…...

【PowerQuery专栏】PowerQuery的M语言函数Access数据库访问

Access是相对比较小型的文件型数据库,PowerQuery 进行Access数据库解析非常简单,直接使用Access.Database的函数可以实现数据库访问,函数包含如下参数,函数结果为Table表类型。 Access.Database(参数1 as binary,参数2 as record) as Table 参数1为数据库,数据类型为二进…...

C# OpenCvSharp 部署文档矫正,包括文档扭曲/模糊/阴影等情况

目录 说明 效果 模型 项目 代码 下载 参考 C# OpenCvSharp 部署文档矫正&#xff0c;包括文档扭曲/模糊/阴影等情况 说明 地址&#xff1a;https://github.com/RapidAI/RapidUnDistort 修正文档扭曲/模糊/阴影等情况&#xff0c;使用onnx模型简单轻量部署&#xff0c…...

go读取excel游戏配置

1.背景 游戏服务器&#xff0c;配置数据一般采用csv/excel来作为载体&#xff0c;这种方式&#xff0c;策划同学配置方便&#xff0c;服务器解析也方便。在jforgame框架里&#xff0c;我们使用以下的excel配置格式。 然后可以非常方便的进行数据检索&#xff0c;例如&#xff…...

特殊类设计

[本节目标] 掌握常见特殊类的设计方式 1.请设计一个类&#xff0c;不能被拷贝 拷贝只会放生在两个场景中&#xff1a;拷贝构造函数以及赋值运算符重载&#xff0c;因此想要让一个类禁止拷贝&#xff0c;只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。 C98 将拷贝构…...

图像去雾数据集的下载和预处理操作

前言 目前&#xff0c;因为要做对比实验&#xff0c;收集了一下去雾数据集&#xff0c;并且建立了一个数据集的预处理工程。 这是以前我写的一个小仓库&#xff0c;我决定还是把它用起来&#xff0c;下面将展示下载的路径和数据处理的方法。 下面的代码均可以在此找到。Auo…...

【LeetCode】--- MySQL刷题集合

1.组合两个表&#xff08;外连接&#xff09; select p.firstName,p.lastName,a.city,a.state from Person p left join Address a on p.personId a.personId; 以左边表为基准&#xff0c;去连接右边的表。取两表的交集和左表的全集 2.第二高的薪水 &#xff08;子查询、if…...

基于Python的多元医疗知识图谱构建与应用研究(上)

一、引言 1.1 研究背景与意义 在当今数智化时代,医疗数据呈爆发式增长,如何高效管理和利用这些数据,成为提升医疗服务质量的关键。传统医疗数据管理方式存在数据孤岛、信息整合困难等问题,难以满足现代医疗对精准诊断和个性化治疗的需求。知识图谱作为一种知识表示和管理…...

小哆啦解题记:如何计算除自身以外数组的乘积

小哆啦开始力扣每日一题的第十二天 https://leetcode.cn/problems/product-of-array-except-self/description/ 《小哆啦解题记&#xff1a;如何计算除自身以外数组的乘积》 在一个清晨的阳光下&#xff0c;小哆啦坐在书桌前&#xff0c;思索着一道困扰已久的题目&#xff1a;…...

渐进式图片的实现原理

渐进式图片&#xff08;Progressive JPEG&#xff09;的实现原理与传统的基线 JPEG&#xff08;Baseline JPEG&#xff09;不同。它通过改变图片的编码和加载方式&#xff0c;使得图片在加载时能够逐步显示从模糊到清晰的图像。 1. 传统基线 JPEG 的加载方式 在传统的基线 JP…...

SQL刷题快速入门(三)

其他章节&#xff1a; SQL刷题快速入门&#xff08;一&#xff09; SQL刷题快速入门&#xff08;二&#xff09; 承接前两个章节&#xff0c;本系列第三章节主要讲SQL中where和having的作用和区别、 GROUP BY和ORDER BY作用和区别、表与表之间的连接操作&#xff08;重点&…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...