当前位置: 首页 > news >正文

算法每日双题精讲 —— 二分查找(寻找旋转排序数组中的最小值,点名)

 🌟快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。 🌟 

别再犹豫了!快来订阅我们的算法每日双题精讲专栏,一起踏上算法学习的精彩之旅吧💪   


         在算法的学习之旅中,二分查找是一种高效且经典的算法,其应用场景广泛。今天我们将深入探讨如何运用二分查找来解决 “寻找旋转排序数组中的最小值” 以及趣味十足的 “点名” 问题。这两道题不仅能加深我们对二分查找的理解,还能锻炼我们在不同场景下灵活运用算法的能力。 


 目录

一、寻找旋转排序数组中的最小值

📖题目描述

🧠讲解算法原理

💻代码实现(以 C++ 为例)

复杂度分析

二、点名

📖题目描述

🧠讲解算法原理

💻代码实现(以 C++ 为例)

复杂度分析


一、寻找旋转排序数组中的最小值

题目链接👉【力扣】

📖题目描述

 

 

 

🧠讲解算法原理

对于这道题,我们可以利用二分查找来优化时间复杂度。

        初始化左指针 left 为 0,右指针 right 为数组长度减 1。在循环过程中,计算中间索引 mid = left + (right - left) / 2 。

比较 nums[mid] 与 nums[right] 的大小:

  • 如果 nums[mid] < nums[right] ,说明最小值在 mid 及其左边,因为 mid 到 right 这一段是有序的,最小值肯定不在这一段,所以将 right 更新为 mid 。
  • 如果 nums[mid] > nums[right] ,说明最小值在 mid 的右边,因为 mid 及其左边这一段是有序的,最小值不在这一段,所以将 left 更新为 mid + 1 。

当 left 等于 right 时,循环结束,此时 nums[left] 就是数组中的最小值。

 

💻代码实现(以 C++ 为例)

#include <iostream>
#include <vector>using namespace std;int findMin(vector<int>& nums) {int left = 0, right = nums.size() - 1;while (left < right) {int mid = left + (right - left) / 2;if (nums[mid] < nums[right]) {right = mid;}else {left = mid + 1;}}return nums[left];
}

复杂度分析

 

  • 时间复杂度:每次循环都将搜索区间缩小一半,所以时间复杂度为 O(log n),其中 n 是数组的长度。相比遍历整个数组查找最小值的暴力解法(时间复杂度为 O(n)),效率大大提高。
  • 空间复杂度:只使用了常数级别的额外空间,即几个指针变量,所以空间复杂度为 O(1)

二、点名

 题目链接👉【力扣】

📖题目描述

 

 

 

🧠讲解算法原理

这道题同样可以借助二分查找来高效解决。

        初始化左指针 left 为 0,右指针 right 为名单长度减 1。

        在循环中,计算中间索引 mid = left + (right - left) / 2 。

比较中间位置的学生名字与老师点的名字:

  • 如果相同,直接返回 mid 。
  • 如果中间位置的名字小于老师点的名字,说明要找的名字在 mid 的右边,将 left 更新为 mid + 1 。
  • 如果中间位置的名字大于老师点的名字,说明要找的名字在 mid 的左边,将 right 更新为 mid - 1 。

当 left 大于 right 时,循环结束,说明名单中没有该学生,返回 -1 。

💻代码实现(以 C++ 为例)

#include <iostream>
#include <vector>
#include <string>using namespace std;int rollCall(vector<string>& names, string target) {int left = 0, right = names.size() - 1;while (left <= right) {int mid = left + (right - left) / 2;if (names[mid] == target) {return mid;}else if (names[mid] < target) {left = mid + 1;}else {right = mid - 1;}}return -1;
}

复杂度分析

  • 时间复杂度:每次迭代都能将搜索区间缩小一半,时间复杂度为O(log n) ,其中 n是名单中学生的数量。相比逐个遍历名单查找学生的暴力解法(时间复杂度为 O(n)),效率大幅提升。
  • 空间复杂度:只使用了常数级别的额外空间,如几个指针变量,所以空间复杂度为 O(1)

        通过对这两道题目的学习,我们对二分查找算法的理解和应用能力又上了一个新台阶。在今后遇到类似问题时,要学会灵活运用二分查找来优化代码的时间复杂度。

如果大家在学习过程中有任何疑问或者想法,欢迎在评论区交流分享。后续我还会带来更多精彩的算法内容,记得关注哦!

 

相关文章:

算法每日双题精讲 —— 二分查找(寻找旋转排序数组中的最小值,点名)

&#x1f31f;快来参与讨论&#x1f4ac;&#xff0c;点赞&#x1f44d;、收藏⭐、分享&#x1f4e4;&#xff0c;共创活力社区。 &#x1f31f; 别再犹豫了&#xff01;快来订阅我们的算法每日双题精讲专栏&#xff0c;一起踏上算法学习的精彩之旅吧&#x1f4aa; 在算法的…...

three.js+WebGL踩坑经验合集(4.2):为什么不在可视范围内的3D点投影到2D的结果这么不可靠

上一篇&#xff0c;笔者留下了一个问题&#xff0c;three.js内置的THREE.Vector3.project方法算出来的结果对于超出屏幕可见范围的点来说错得相当离谱。 three.jsWebGL踩坑经验合集(4.1):THREE.Line2的射线检测问题&#xff08;注意本篇说的是Line2&#xff0c;同样也不是阈值…...

Kafka运维宝典 (二)- kafka 查看kafka的运行状态、broker.id不一致导致启动失败问题、topic消息积压量告警监控脚本

Kafka运维宝典 &#xff08;二&#xff09; 文章目录 Kafka运维宝典 &#xff08;二&#xff09;一、kafka broker.id冲突问题1. broker.id 冲突的影响2. 如何发现 broker.id 冲突3. 解决 broker.id 冲突的方法4. broker.id 配置管理5. 集群启动后确认 broker.id 唯一性6. brok…...

全球AI模型百科全书,亚马逊云科技Bedrock上的100多款AI模型

今天小李哥给大家介绍的是亚马逊云科技上的AI模型管理平台Amazon Bedrock上的Marketplace&#xff0c;这是亚马逊云科技在今年re:Invent发布的一个全新功能&#xff0c;将亚马逊的电商基因带到了其云计算平台&#xff0c;让我们能够通过Amazon Bedrock访问100多种流行、新兴和专…...

微信小程序中常见的 跳转方式 及其特点的表格总结(wx.navigateTo 适合需要返回上一页的场景)

文章目录 详细说明总结wx.navigateTo 的特点为什么 wx.navigateTo 最常用&#xff1f;其他跳转方式的使用频率总结 以下是微信小程序中常见的跳转方式及其特点的表格总结&#xff1a; 跳转方式API 方法特点适用场景wx.navigateTowx.navigateTo({ url: 路径 })保留当前页面&…...

【Elasticsearch】index:false

在 Elasticsearch 中&#xff0c;index 参数用于控制是否对某个字段建立索引。当设置 index: false 时&#xff0c;意味着该字段不会被编入倒排索引中&#xff0c;因此不能直接用于搜索查询。然而&#xff0c;这并不意味着该字段完全不可访问或没有其他用途。以下是关于 index:…...

新版IDEA创建数据库表

这是老版本的IDEA创建数据库表&#xff0c;下面可以自己勾选Not null&#xff08;非空),Auto inc&#xff08;自增长),Unique(唯一标识)和Primary key&#xff08;主键) 这是新版的IDEA创建数据库表&#xff0c;Not null和Auto inc可以看得到&#xff0c;但Unique和Primary key…...

输入带空格的字符串,求单词个数

输入带空格的字符串&#xff0c;求单词个数 __ueooe_eui_sjje__ ---->3syue__jdjd____die_ ---->3shuue__dju__kk ---->3 #include <stdio.h> #include <string.h>// 自定义函数来判断字符是否为空白字符 int isSpace(char c) {return c || c \t || …...

C语言程序设计十大排序—希尔排序

文章目录 1.概念✅2.希尔排序&#x1f388;3.代码实现✅3.1 直接写✨3.2 函数✨ 4.总结✅ 1.概念✅ 排序是数据处理的基本操作之一&#xff0c;每次算法竞赛都很多题目用到排序。排序算法是计算机科学中基础且常用的算法&#xff0c;排序后的数据更易于处理和查找。在计算机发展…...

Excel制作合同到期自动提醒!

大家好&#xff0c;我是小鱼。 今天分享一下如何利用Excel制作合同到期提醒表&#xff0c;实现Excel表格自动计算合同到期日和天数&#xff0c;根据合同状态和到期天数自动填充颜色提醒&#xff0c;超实用。先看一下效果&#xff0c;已经到期的合同会自动被填充为红色&#xf…...

“AI质量评估系统:智能守护,让品质无忧

嘿&#xff0c;各位小伙伴们&#xff01;今天咱们来聊聊一个在现代社会中越来越重要的角色——AI质量评估系统。你知道吗&#xff1f;在这个快速发展的时代&#xff0c;产品质量已经成为企业生存和发展的关键。而AI质量评估系统&#xff0c;就像是我们的智能守护神&#xff0c;…...

爬虫基础之爬取某基金网站+数据分析

声明: 本案例仅供学习参考使用&#xff0c;任何不法的活动均与本作者无关 网站:天天基金网(1234567.com.cn) --首批独立基金销售机构-- 东方财富网旗下基金平台! 本案例所需要的模块: 1.requests 2.re(内置) 3.pandas 4.pyecharts 其他均需要 pip install 模块名 爬取步骤: …...

使用 Aryn DocPrep、DocParse 和 Elasticsearch 向量数据库实现高质量 RAG

作者&#xff1a;来自 Elastic Hemant Malik 及 Jonathan Fritz 组织依靠自然语言查询从非结构化数据中获取见解&#xff0c;但要获得高质量的答案&#xff0c;首先要进行有效的数据准备。Aryn DocParse 和 DocPrep通过将复杂文档转换为结构化 JSON 或 markdown 来简化此过程&a…...

Couchbase UI: Server

在 Couchbase UI 中的 Server&#xff08;服务器&#xff09;标签页主要用于管理和监控集群中的各个节点。以下是 Server 标签页的主要内容和功能介绍&#xff1a; 1. 节点列表 显示集群中所有节点的列表&#xff0c;每个节点的详细信息包括&#xff1a; 节点地址&#xff1…...

Web3.0时代的挑战与机遇:以开源2+1链动模式AI智能名片S2B2C商城小程序为例的深度探讨

摘要&#xff1a;Web3.0作为互联网的下一代形态&#xff0c;承载着去中心化、开放性和安全性的重要愿景。然而&#xff0c;其高门槛、用户体验差等问题阻碍了Web3.0的主流化进程。本文旨在深入探讨Web3.0面临的挑战&#xff0c;并提出利用开源21链动模式、AI智能名片及S2B2C商城…...

langchain基础(一)

模型又可分为语言模型&#xff08;擅长文本补全&#xff0c;输入和输出都是字符串&#xff09;和聊天模型&#xff08;擅长对话&#xff0c;输入时消息列表&#xff0c;输出是一个消息&#xff09;两大类。 以调用openai的聊天模型为例&#xff0c;先安装langchain_openai库 1…...

【Android】布局文件layout.xml文件使用控件属性android:layout_weight使布局较为美观,以RadioButton为例

目录 说明举例 说明 简单来说&#xff0c;android:layout_weight为当前控件按比例分配剩余空间。且单个控件该属性的具体数值不重要&#xff0c;而是多个控件的属性值之比发挥作用&#xff0c;例如有2个控件&#xff0c;各自的android:layout_weight的值设为0.5和0.5&#xff0…...

RabbitMQ 架构分析

文章目录 前言一、RabbitMQ架构分析1、Broker2、Vhost3、Producer4、Messages5、Connections6、Channel7、Exchange7、Queue8、Consumer 二、消息路由机制1、Direct Exchange2、Topic Exchange3、Fanout Exchange4、Headers Exchange5、notice5.1、备用交换机&#xff08;Alter…...

Qt Enter和HoverEnter事件

介绍 做PC开发的过程中或多或少都会接触到鼠标的悬停事件&#xff0c;Qt中处理鼠标悬停有Enter和HoverEnter两种事件 相同点 QEvent::Enter对应QEnterEvent&#xff0c;描述的是鼠标进入控件坐标范围之内的行为&#xff0c;QEnterEvent可以抓取鼠标的位置&#xff1b;QEvent…...

大语言模型之prompt工程

前言 随着人工智能的快速发展&#xff0c;我们正慢慢进入AIGC的新时代&#xff0c;其中对自然语言的处理成为了智能化的关键一环&#xff0c;在这个大背景下&#xff0c;“Prompt工程”由此产生&#xff0c;并且正逐渐成为有力的工具... LLM &#xff08;Large Language Mode…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...