当前位置: 首页 > news >正文

计算机毕业设计Django+Tensorflow音乐推荐系统 机器学习 深度学习 音乐可视化 音乐爬虫 知识图谱 混合神经网络推荐算法 大数据毕设

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Django+Tensorflow音乐推荐系统》任务书

一、项目背景与意义

随着互联网音乐的普及和个性化需求的增长,音乐推荐系统成为提升用户体验、增强用户粘性的关键工具。传统的音乐推荐方法大多基于用户的历史行为或歌曲的流行度,但这些方法往往忽略了用户深层次的兴趣和歌曲复杂的特征。因此,本项目旨在利用Django框架构建后端服务,结合Tensorflow深度学习框架,开发一款高效、智能的音乐推荐系统。该系统能够深入挖掘用户偏好和歌曲特征,为用户提供个性化的音乐推荐,从而提升用户满意度和音乐平台的竞争力。

二、项目目标与任务
项目目标
  1. 开发一款基于Django和Tensorflow的音乐推荐系统原型。
  2. 实现用户行为数据的收集、处理和存储,以及歌曲特征提取和表示。
  3. 设计并实现深度学习推荐算法,提高音乐推荐的准确性和多样性。
  4. 提供友好的用户界面,方便用户查看推荐结果和进行交互。
主要任务
  1. 系统架构设计:设计系统的整体架构,包括前端、后端、数据库和推荐算法模块。
  2. 数据收集与处理:收集用户行为数据(如播放历史、点赞、评论等)和歌曲元数据(如标题、歌手、流派、节奏等),并进行数据清洗、格式化和预处理。
  3. 歌曲特征提取:利用音频分析技术提取歌曲的特征,如旋律、和声、节奏等,为推荐算法提供丰富的特征表示。
  4. 深度学习推荐算法实现:基于Tensorflow框架,设计并实现深度学习推荐算法,如神经网络协同过滤、循环神经网络(RNN)或卷积神经网络(CNN)等,用于捕捉用户偏好和歌曲特征之间的复杂关系。
  5. 后端服务开发:使用Django框架开发后端服务,包括用户管理、歌曲管理、推荐算法接口等,实现数据的存储、检索和推荐结果的生成。
  6. 前端界面设计:设计并实现友好的用户界面,展示推荐结果,并提供用户交互功能,如搜索、筛选、收藏等。
  7. 系统测试与优化:进行系统测试,包括功能测试、性能测试、安全测试等,确保系统的稳定性和可靠性;根据测试结果进行算法优化和系统改进。
三、技术要求与实现方法
  1. 技术要求
    • 熟悉Django框架和Tensorflow深度学习框架。
    • 掌握数据库设计和管理,如MySQL或PostgreSQL。
    • 了解音频分析技术和特征提取方法。
    • 熟悉前端开发技术,如HTML、CSS、JavaScript和前端框架(如React或Vue)。
  2. 实现方法
    • 采用模块化设计,将系统分为前端、后端、数据库和推荐算法模块,便于开发和维护。
    • 使用Django的ORM框架进行数据库操作,提高开发效率。
    • 利用Tensorflow实现深度学习推荐算法,并进行模型训练和调优。
    • 前端采用响应式设计,确保在不同设备上都能提供良好的用户体验。
四、项目计划与进度安排
  1. 需求分析与系统设计(第1-2周):进行项目需求分析,明确项目目标和任务;设计系统的整体架构和模块划分。
  2. 数据收集与处理(第3-4周):收集用户行为数据和歌曲元数据,进行数据清洗、格式化和预处理。
  3. 歌曲特征提取(第5-6周):利用音频分析技术提取歌曲的特征,为推荐算法提供特征表示。
  4. 深度学习推荐算法实现(第7-10周):基于Tensorflow框架设计并实现深度学习推荐算法,进行模型训练和调优。
  5. 后端服务开发(第11-14周):使用Django框架开发后端服务,实现数据的存储、检索和推荐结果的生成。
  6. 前端界面设计(第15-16周):设计并实现友好的用户界面,展示推荐结果,并提供用户交互功能。
  7. 系统测试与优化(第17-18周):进行系统测试,包括功能测试、性能测试、安全测试等;根据测试结果进行算法优化和系统改进。
  8. 项目总结与报告撰写(第19周):整理项目成果,撰写项目总结报告和技术文档。
五、预期成果与验收标准
  1. 预期成果
    • 完成基于Django和Tensorflow的音乐推荐系统原型开发。
    • 实现用户行为数据的收集、处理和存储,以及歌曲特征提取和表示。
    • 设计并实现深度学习推荐算法,提高音乐推荐的准确性和多样性。
    • 提供友好的用户界面,方便用户查看推荐结果和进行交互。
  2. 验收标准
    • 系统功能完整,能够正常运行并提供音乐推荐服务。
    • 推荐算法准确度高,能够为用户提供个性化的音乐推荐。
    • 用户界面友好,易于使用和理解。
    • 系统性能稳定,能够满足一定规模的用户并发访问需求。

以上即为《Django+Tensorflow音乐推荐系统》的任务书,详细阐述了项目背景、目标、任务、技术要求、计划与进度安排、预期成果与验收标准,为后续的系统开发和研究工作提供了明确的方向和框架。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

相关文章:

计算机毕业设计Django+Tensorflow音乐推荐系统 机器学习 深度学习 音乐可视化 音乐爬虫 知识图谱 混合神经网络推荐算法 大数据毕设

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

AI 图片涌入百度图库

在这个信息爆炸的时代,我们习惯了通过搜索引擎来获取各种想要的信息和图片。然而,现在打开搜索引擎看到的却是许多真假难辨的信息——AI图片,这部分数据正以惊人的速度涌入百度图库,让小编不禁想问:未来打开百度图库不…...

可爱狗狗的404动画页面HTML源码

源码介绍 可爱狗狗的404动画页面HTML源码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果 效果预览 源码获取 可爱狗狗的404动画页面HTML源码...

【微服务与分布式实践】探索 Dubbo

核心组件 服务注册与发现原理 服务提供者启动时,会将其服务信息(如服务名、版本、所在节点的网络地址等)注册到注册中心。服务消费者则可以从注册中心发现可用的服务提供者列表,并与之通信。注册中心会存储服务的信息&#xff0c…...

OpenCSG月度更新2025.1

1月的OpenCSG取得了一些亮眼的成绩 在2025年1月,OpenCSG在产品和社区方面继续取得了显著进展。产品方面,推出了AutoHub浏览器自动化助手,帮助用户提升浏览体验;CSGHub企业版功能全面升级,现已开放试用申请&#xff0c…...

C++封装红黑树实现mymap和myset和模拟实现详解

文章目录 map和set的封装map和set的底层 map和set的模拟实现insertiterator实现的思路operatoroperator- -operator[ ] map和set的封装 介绍map和set的底层实现 map和set的底层 一份模版实例化出key的rb_tree和pair<k,v>的rb_tree rb_tree的Key和Value不是我们之前传统意…...

二次封装的方法

二次封装 我们开发中经常需要封装一些第三方组件&#xff0c;那么父组件应该怎么传值&#xff0c;怎么调用封装好的组件原有的属性、插槽、方法&#xff0c;一个个调用虽然可行&#xff0c;但十分麻烦&#xff0c;我们一起来看更简便的方法。 二次封装组件&#xff0c;属性怎…...

消息队列篇--通信协议篇--网络通信模型(OSI7层参考模型,TCP/IP分层模型)

一、OSI参考模型&#xff08;Open Systems Interconnection Model&#xff09; OSI参考模型是一个用于描述和标准化网络通信功能的七层框架。它由国际标准化组织&#xff08;ISO&#xff09;提出&#xff0c;旨在为不同的网络设备和协议提供一个通用的语言和结构&#xff0c;以…...

Python实现U盘数据自动拷贝

功能&#xff1a;当电脑上有U盘插入时&#xff0c;自动复制U盘内的所有内容 主要特点&#xff1a; 1、使用PyQt5创建图形界面&#xff0c;但默认隐藏 2、通过CtrlAltU组合键可以显示/隐藏界面 3、自动添加到Windows启动项 4、监控USB设备插入 5、按修改时间排序复制文件 6、静…...

汇编的使用总结

一、汇编的组成 1、汇编指令&#xff08;指令集&#xff09; 数据处理指令: 数据搬移指令 数据移位指令 位运算指令 算术运算指令 比较指令 跳转指令 内存读写指令 状态寄存器传送指令 异常产生指令等 2、伪指令 不是汇编指令&#xff0c;但是可以起到指令的作用&#xff0c;伪…...

DeepSeek理解概率的能力

问题&#xff1a; 下一个问题是概率问题。乘车时有一个人带刀子的概率是百分之一&#xff0c;两个人同时带刀子的概率是万分之一。有人认为如果他乘车时带上刀子&#xff0c;那么还有其他人带刀子的概率就是万分之一&#xff0c;他乘车就会安全得多。他的想法对吗&#xff1f;…...

AI 浪潮席卷中国年,开启科技新春新纪元

在这博主提前祝大家蛇年快乐呀&#xff01;&#xff01;&#xff01; 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;其影响力已经渗透到社会生活的方方面面。在中国传统节日 —— 春节期间&#xff0c;AI 技术也展现出了巨大的潜力&#xff0c;为中国年带…...

AI时代的网络安全:传统技术的落寞与新机遇

AI时代的网络安全&#xff1a;传统技术的落寞与新机遇 在AI技术飞速发展的浪潮中&#xff0c;网络安全领域正经历着前所未有的变革。一方面&#xff0c;传统网络安全技术在面对新型攻击手段时逐渐显露出局限性&#xff1b;另一方面&#xff0c;AI为网络安全带来了新的机遇&…...

可以称之为“yyds”的物联网开源框架有哪几个?

有了物联网的发展&#xff0c;我们的生活似乎也变得更加“鲜活”、有趣、便捷&#xff0c;包具有科技感的。在物联网&#xff08;IoT&#xff09;领域中&#xff0c;也有许多优秀的开源框架支持设备连接、数据处理、云服务等&#xff0c;成为被用户们广泛认可的存在。以下给大家…...

线程局部存储tls的原理和使用

一、背景 tls即Thread Local Storage&#xff0c;也就是线程局部存储&#xff0c;可在进程内&#xff0c;多线程按照各个线程分开进行存储。对于一些与线程上下文相关的变量&#xff0c;可放到tls中&#xff0c;减少多线程之间的数据同步的开销。 有人可能会问&#xff0c;我…...

RK3588平台开发系列讲解(ARM篇)ARM64底层中断处理

文章目录 一、异常级别二、异常分类2.1、同步异常2.2、异步异常三、中断向量表沉淀、分享、成长,让自己和他人都能有所收获!😄 一、异常级别 ARM64处理器确实定义了4个异常级别(Exception Levels, EL),分别是EL0到EL3。这些级别用于管理处理器的特权级别和权限,级别越高…...

CAN总线

1. 数据帧&#xff08;Data Frame&#xff09; 数据帧是 CAN 总线中最常用的帧类型&#xff0c;用于传输实际的数据。其结构如下&#xff1a; 起始位&#xff08;Start of Frame, SOF&#xff09;&#xff1a;标志帧的开始。标识符&#xff08;Identifier&#xff09;&#x…...

qwen2.5-vl:阿里开源超强多模态大模型(包含使用方法、微调方法介绍)

1.简介 在 Qwen2-VL 发布后的五个月里&#xff0c;众多开发者基于该视觉语言模型开发了新的模型&#xff0c;并向 Qwen 团队提供了极具价值的反馈。在此期间&#xff0c;Qwen 团队始终致力于打造更具实用性的视觉语言模型。今天&#xff0c;Qwen 家族的最新成员——Qwen2.5-VL…...

python实现dbscan

python实现dbscan 原理 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合&#xff0c;能够把具有足够高密度的区域划分为簇&#xff0c;并可在噪声的空间数据库中发现任意形…...

学习数据结构(3)顺序表

1.动态顺序表的实现 &#xff08;1&#xff09;初始化 &#xff08;2&#xff09;扩容 &#xff08;3&#xff09;头部插入 &#xff08;4&#xff09;尾部插入 &#xff08;5&#xff09;头部删除 &#xff08;这里注意要保证有效数据个数不为0&#xff09; &#xff08;6&a…...

正在更新丨豆瓣电影详细数据的采集与可视化分析(scrapy+mysql+matplotlib+flask)

文章目录 豆瓣电影详细数据的采集与可视化分析(scrapy+mysql+matplotlib+flask)写在前面数据采集0.注意事项1.创建Scrapy项目`douban2025`2.用`PyCharm`打开项目3.创建爬虫脚本`douban.py`4.修改`items.py`的代码5.修改`pipelines.py`代码6.修改`settings.py`代码7.启动`doub…...

wx043基于springboot+vue+uniapp的智慧物流小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…...

每日一题 430. 扁平化多级双向链表

430. 扁平化多级双向链表 简单 /*class Solution { public:Node* flatten(Node* head) {Node* tail nullptr;return dfs(head);}Node* dfs(Node* head){Node* cur head;while(cur ! nullptr){if(cur->child ! nullptr){Node* curChild getTail(cur->child);Node* te…...

UE学习日志#14 GAS--ASC源码简要分析10 GC相关

注&#xff1a;1.这个分类是按照源码里的注释分类的 2.本篇是通读并给出一些注释形式的&#xff0c;并不涉及结构性的分析 3.看之前要对UE的GAS系统的定义有初步了解 4.因为都是接口函数&#xff0c;有些没细看的研究那一部分的时候会细看 1 一些接口函数&#xff0c;但是…...

使用Python和Qt6创建GUI应用程序--关于Qt的一点介绍

关于Qt的一点介绍 Qt是一个免费的开源部件工具包&#xff0c;用于创建跨平台GUI应用程序&#xff0c;允许应用程序从Windows瞄准多个平台&#xff0c;macOS&#xff0c; Linux和Android的单一代码库。但是Qt不仅仅是一个Widget工具箱和功能内置支持多媒体&#xff0c;数据库&am…...

C#@符号在string.Format方法中作用

本文详解@符号在string.Format方法中作用。...

Next.js 14 TS 中使用jwt 和 App Router 进行管理

jwt是一个很基础的工作。但是因为架构不一样&#xff0c;就算是相同的架构&#xff0c;版本不一样&#xff0c;加jwt都会有一定的差别。现在我们的项目是Next.js 14 TS 的 App Router项目&#xff08;就是没有pages那种&#xff09;&#xff0c;添加jwt的步骤&#xff1a; 1、…...

【贪心算法】洛谷P1090 合并果子 / [USACO06NOV] Fence Repair G

2025 - 01 - 21 - 第 45 篇 【洛谷】贪心算法题单 -【 贪心算法】 - 【学习笔记】 作者(Author): 郑龙浩 / 仟濹(CSND账号名) 洛谷 P1090[NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G 【贪心算法】 文章目录 洛谷 P1090[NOIP2004 提高组] 合并果子 / [USACO06…...

Windows11无法打开Windows安全中心主界面

​# 问题描述 安全中心无法打卡主界面&#xff0c;并弹出“需要使用新应用以打开此windowsdefender连接”. 解决方法 以管理员权限打开PowerShell&#xff0c;推荐使用快捷键win x打开快捷界面&#xff0c;选择Windows终端&#xff08;管理员&#xff09;&#xff0c;并在终…...

下载arm架构的deb包的方法

在ARM板上操作 如果你是在arm板上使用apt安装和下载包&#xff0c;那么安装过的包会在以下路径里&#xff1a; /var/cache/apt/archives只需要复制出来就可以 如果只下载不安装&#xff0c;可以使用命令 sudo apt-get -d install package_name:arm64 # 如果是32位&#xff0…...