(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
1 项目简介(开源地址在文章结尾)
系统旨在为了帮助鸟类爱好者、学者、动物保护协会等群体更好的了解和保护鸟类动物。用户群体可以通过平台采集野外鸟类的保护动物照片和视频,甄别分类、实况分析鸟类保护动物,与全世界各地的用户,沟通交流。
2 启动步骤
1.配置开发环境
2.python manage.py makemigrations 在控制台上使用数据迁移命令
3.python manage.py migrate 在控制台上使用创建表命令
4.将SQL文件中的数据导入到MySQL中,数据库名:db_bird
5.python manage.py runserver 启动服务
6.登录个人账号:test,123456
7.登录后台管理系统,管理员账号和密码:admin,123456
3 开发环境和技术
MySQL 8.0.29
opencv-python 4.9.0
TensorFlow 2.10.0
Ultralytics 8.2.8
Django 3.2.9
Python 3.9.0
NVIDIA GeForce RTX 3050
CUDA Version 12.3
CUDNN 8.2.1
Conda 22.9.0
4 功能模块
5 E-R图
6 数据库设计
observations
id:观察记录的唯一标识符(主键)。
date:观察发生的日期。
location:观察发生的地理位置。
description:对观察到的现象的描述。
additional_notes:观察者可能添加的其他相关信息或备注。
observation_data:存储观察时拍摄的图片的路径或链接。
tags:分类标签
love: 喜欢
bird_id:外键,关联到
Birds
表中特定鸟类的id。user:外键,关联account表中的user_id
birds
id:唯一标识每一种鸟类的数字或字符串标识符(主键)。
images:存储鸟类图片的路径或链接。
name:鸟类的通用名称。
order:鸟类所属的目。
family:鸟类所属的科。
genus:鸟类所属的属。
size:鸟类的体型描述,如长度、翼展、重量等。
plumage:羽毛的颜色和图案。
habitat:鸟类的栖息地,如森林、湿地、草原等。
distribution:鸟类的地理分布范围。
iucn_status:根据IUCN(国际自然保护联盟)的评估,鸟类的保护等级。
love_number:人气值
observations_number:观察数
date:统计时间
user_info_love
id:编号
user_info_id:用户表编号
observation_id:观察表编号
user_info_observation
id:编号
user_info_id:用户表编号
observation_id:观察表编号
media
media_id:社交媒体内容的编号
user:外键,关联account表中的user_id
username:用户名
text:发布的内容
date:发布的时间
comments:评论内容
user_info
user_id:用户ID
username:用户姓名
pwd:用户密码
user:外键,关联account表中的user_id
username:账号名
phone:电话号
email:邮箱
...
7 页面设计
首页 鸟类观察
实况甄别
鸟类档案馆
世界频道
个人信息 后台管理
8 开源地址
Github开源地址https://github.com/hxh12581/Intelligent_Bird_Identification_Platformhttps://github.com/hxh12581/Intelligent_Bird_Identification_Platformhttps://github.com/hxh12581/Intelligent_Bird_Identification_Platformhttps://github.com/hxh12581/Intelligent_Bird_Identification_Platformhttps://github.com/hxh12581/Intelligent_Bird_Identification_Platformhttps://github.com/hxh12581/Intelligent_Bird_Identification_Platform
相关文章:

(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
1 项目简介(开源地址在文章结尾) 系统旨在为了帮助鸟类爱好者、学者、动物保护协会等群体更好的了解和保护鸟类动物。用户群体可以通过平台采集野外鸟类的保护动物照片和视频,甄别分类、实况分析鸟类保护动物,与全世界各地的用户&…...

后盾人JS--闭包明明白白
延伸函数环境生命周期 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> <…...

redis的分片集群模式
redis的分片集群模式 1 主从哨兵集群的问题和分片集群特点 主从哨兵集群可应对高并发写和高可用性,但是还有2个问题没有解决: (1)海量数据存储 (2)高并发写的问题 使用分片集群可解决,分片集群…...
Kiwi 安卓浏览器本月停止维护,扩展功能迁移至 Edge Canary
IT之家 1 月 25 日消息,科技媒体 Android Authority 今天(1 月 25 日)发布博文,报道称 Kiwi 安卓浏览器将于本月停止维护,相关扩展支持功能已整合到微软 Edge Canary 浏览器中。 开发者 Arnaud42 表示 Kiwi 安卓浏览器…...
我的AI工具箱Tauri+Django内容生产介绍和使用
在现代内容生产环境中,高效、自动化的工具能够显著提升生产力,降低人工成本。Tauri 与 Django 结合打造的工作箱,集成了强大的 音频处理、视频剪辑、内容下载 以及 AI 文章撰写 等模块,帮助用户在多媒体内容生产的各个环节实现高效…...

四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用)
四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用) 文章目录 四.4 Redis 五大数据类型/结构的详细说明/详细使用( zset 有序集合数据类型详解和使用)1. 有序集合 Zset(sorted set)2. zset 有序…...

Java---猜数字游戏
本篇文章所实现的是Java经典的猜数字游戏 , 运用简单代码来实现基本功能 目录 一.题目要求 二.游戏准备 三.代码实现 一.题目要求 随机生成一个1-100之间的整数(可以自己设置区间),提示用户猜测,猜大提示"猜大了",…...
网站快速收录:利用RSS订阅提升效率
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/27.html 利用RSS订阅可以显著提升网站内容的更新和收录效率,以下是一些具体的方法和策略: 一、RSS订阅的基本原理 RSS(ReallySimpleSyndication或RichS…...
vue3第三部分--组件通信
title: 组件通信 date: 2025-01-28 12:00:00 tags:- 前端 categories:- 前端组件通信 目标:重点学习父子组件与兄弟组件的通信方式,以及插槽的作用与使用方式 父子组件通信 主要是通过props和自定义事件来实现 1.1 父 -> 子通信(通过 …...

DeepSeek R1-Zero vs. R1:强化学习推理的技术突破与应用前景
📌 引言:AI 推理的新时代 近年来,大语言模型(LLM) 的规模化扩展成为 AI 研究的主流方向。然而,LLM 的扩展是否真的能推动 通用人工智能(AGI) 的实现?DeepSeek 推出的 R1…...
matlab提取滚动轴承故障特征
为了精准、稳定地提取滚动轴承故障特征,提出了基于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C均值聚类(fuzzy C means clustering, FCM)进行故障识 别。对同一负荷下的已知故障信号进行变分模态分解,利用 奇异值分解技术进一步提…...
数据结构与算法学习笔记----容斥原理
数据结构与算法学习笔记----容斥原理 author: 明月清了个风 first publish time: 2025.1.30 ps⭐️介绍了容斥原理的相关内容以及一道对应的应用例题。 Acwing 890. 能被整除的数 [原题链接](890. 能被整除的数 - AcWing题库) 给定一个整数 n n n和 m m m个不同的质数 p 1 …...
Java 知识速记:全面解析 final 关键字
Java 知识速记:全面解析 final 关键字 什么是 final 关键字? final 关键字是 Java 中的一个修饰符。它可以用于类、方法和变量,其作用是限制对这些元素的修改。究竟如何限制?我们来逐个分析。 final 在变量中的用法 1. 声明常…...

(笔记+作业)书生大模型实战营春节卷王班---L0G2000 Python 基础知识
学员闯关手册:https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频:https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档:https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业:htt…...

9、Docker环境安装Nginx
一、拉取镜像 docker pull nginx:1.24.0二、创建映射目录 作用:是将docker中nginx的相关配置信息映射到外面,方便修改配置文件 1、创建目录 # cd home/ # mkdir nginx/ # cd nginx/ # mkdir conf html log2、生成容器 docker run -p 80:80 -d --name…...

受击反馈HitReact、死亡效果Death Dissolve、Floating伤害值Text(末尾附 客户端RPC )
受击反馈HitReact 设置角色受击标签 (GameplayTag基本了解待补充) 角色监听标签并设置移动速度 创建一个受击技能,并应用GE 实现设置角色的受击蒙太奇动画 实现角色受击时播放蒙太奇动画,为了保证通用性,将其设置为一个函数,并…...
572. 另一棵树的子树
前导题:100. 相同的树 回顾一下 判断两棵二叉树相同,根结点相同 且 左子树相同 且 右子树相同。 于是判断如下: 根结点都为null,返回true根结点不都为null,返回false根结点都不为null,但是值不相同&#…...
MATLAB中textBoundary函数用法
目录 语法 说明 示例 匹配文本的边界 匹配文本的结尾边界 对文本的边界求反 textBoundary函数的功能是匹配文本的开头或结尾。 语法 pat textBoundary pat textBoundary(type) 说明 pat textBoundary 创建与文本开头或结尾匹配的模式。textBoundary 可以使用 ~ 运算…...

vue3的路由配置
先找到Layout布局文件,从中找到左侧边栏,找到下述代码 <SidebarItem v-for"route in noHiddenRoutes" :key"route.path" :item"route" :base-path"route.path" />/** *菜单项 <SidebarItem>: *使用…...
在彼此的根系里呼吸
爱如草木,需以晨露滋养,而非绳索捆缚。一段健康的亲密关系,恰似两株根系相连却各自向阳的树——风起时枝叶相触,晴空下共享光影,却始终保有向地心深处生长的自由。那些纠缠的根须是信任编织的网,容得下沉默…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...