DeepSeek R1-Zero vs. R1:强化学习推理的技术突破与应用前景
📌 引言:AI 推理的新时代
近年来,大语言模型(LLM) 的规模化扩展成为 AI 研究的主流方向。然而,LLM 的扩展是否真的能推动 通用人工智能(AGI) 的实现?DeepSeek 推出的 R1-Zero 可能为 AI 推理能力提供了新的技术路径。
📍 关键问题:
-
强化学习(RL) 是否能替代 人工监督学习(SFT),成为 AI 发展的核心?
-
R1-Zero 相较于 R1,带来了哪些技术突破?
-
推理计算的经济模式如何变化?如何影响 AI 产业?
本文将深入探讨 DeepSeek R1-Zero 和 R1 的架构、技术优势、市场趋势及未来发展方向。
🔹 1. DeepSeek R1-Zero vs. R1:架构与技术突破
1.1 R1-Zero 和 R1 的关键技术
DeepSeek 发布的 R1-Zero 和 R1,都属于 Chain-of-Thought(CoT) 推理系统,但它们在训练方式上存在显著区别:
-
R1-Zero:完全基于 强化学习(RL),不依赖人工监督(SFT)。
-
R1:采用 人工监督学习(SFT) 来优化推理质量。
🔹 核心区别:
模型 | 训练方式 | 是否依赖 SFT | 推理能力 |
---|---|---|---|
R1-Zero | 强化学习(RL) | ❌ 无 SFT | 仅依赖自我优化,推理能力接近 R1 |
R1 | 监督学习(SFT) | ✅ 依赖人工标注 | 通过 SFT 提高推理能力 |
技术意义: ✅ R1-Zero 证明 AI 可以完全不依赖人工监督,而实现复杂推理任务,这对未来 AI 发展至关重要。
1.2 评测数据:R1-Zero vs. R1 vs. OpenAI o3
下表展示了 DeepSeek R1-Zero、R1 以及 OpenAI o3 在 ARC-AGI-1 评测上的对比:
模型 | ARC-AGI-1 得分 | 训练方式 | 推理 Token 数 | 推理成本 |
---|---|---|---|---|
R1-Zero | 14% | 纯 RL(无 SFT) | 11K | $0.11 |
R1 | 15.8% | SFT / 无搜索 | 6K | $0.06 |
OpenAI o1(低计算) | 20.5% | SFT / 无搜索 | 7K | $0.43 |
OpenAI o3(低计算) | 75.7% | SFT + 搜索 & 采样 | 335K | $20 |
OpenAI o3(高计算) | 87.5% | SFT + 搜索 & 采样 | 57M | $3.4K |
🔹 数据分析:
-
R1-Zero 仅依靠强化学习,推理能力几乎接近 R1,而 R1 依赖人工标注(SFT)。
-
OpenAI o3(高计算模式)大幅领先,但计算成本极高,不适合大规模部署。
-
R1-Zero 显示了 RL 训练模型的潜力,降低 AI 训练对人工数据的依赖。
🔹 2. AI 训练的经济模式变革
2.1 AI 计算资源从训练阶段转向推理阶段
过去的 AI 训练模式: ✅ LLM 预训练(Pretraining) 需要海量计算资源,训练一次成本极高。
当前趋势: 🚀 推理计算的核心作用正在上升:
-
用户对 AI 的需求从“更高准确率”转向 “更强的可靠性”。
-
计算资源正在从 训练阶段 转移到 推理阶段,推动 AI 硬件、云计算的需求增长。
2.2 AI 投资市场的变化
📊 2023-2024 年 AI 投资情况:
-
LLM 预训练初创公司 获得 ~$20B 资金。
-
AGI 方向的 AI 研究 仅获得 ~$200M 资金。
📍 未来趋势预测:
-
AI 推理市场 将成为投资热点,推理计算的效率和可靠性将主导 AI 产业的发展。
-
智能 AI 代理(Agent) 将逐步取代传统 LLM 预训练的应用。
🔹 3. R1-Zero 在 AI 推理系统中的优势
3.1 强化学习 vs. 监督学习
AI 训练方式 | 特点 | 挑战 |
---|---|---|
人工监督(SFT) | 人类专家标注,提升推理质量 | 数据获取昂贵,扩展性受限 |
强化学习(RL) | R1-Zero 方式,推理能力接近 SFT | 可能缺乏通用语言理解 |
搜索 & 采样(o3) | 通过大规模计算优化推理 | 计算成本过高,不适合大规模部署 |
📍 关键问题:
-
如果 R1-Zero 的 RL 方法能进一步优化,未来是否可以训练出完全无需人工标注的 AGI?
🔹 4. 未来展望:推理 AI 如何影响 AI 产业?
4.1 AI 训练数据的转变
传统 AI 训练数据主要来源:
-
人工标注数据
-
互联网爬取数据
-
合成数据(Synthetic Data)
🔹 R1-Zero 代表了一种新可能:
-
AI 训练可以基于推理生成的数据,而非依赖人工数据,极大降低 AI 训练成本。
-
未来 AI 可能通过 强化学习优化自身推理能力,实现完全自主训练。
4.2 AI 经济模式的变化
-
推理 AI(如 R1-Zero)将成为 AI 训练的新核心。
-
企业可能会为更可靠的 AI 代理支付费用,推动 AI 推理的经济增长。
🔹 5. 结论:R1-Zero 是否代表 AI 推理的未来?
5.1 关键发现
✅ R1-Zero 证明强化学习(RL)可以训练高质量的 AI 推理系统,无需人工监督(SFT)。
✅ AI 计算正在从训练转向推理,未来 AI 产业的发展方向将发生重大变化。
✅ AI 训练数据将从人工标注转向 AI 推理生成,进一步提升 AI 可靠性。
📍 关键问题:
-
RL 是否能完全替代 SFT?
-
AI 推理计算的经济模式如何优化,以降低成本?
-
AI 推理是否将成为未来 AI 训练的主导方式?
无论如何,DeepSeek R1-Zero 的发布标志着 AI 推理进入了新的技术阶段,它可能成为 AI 训练方式变革的催化剂。🚀
🔹 6. 互动讨论
📢 你认为 R1-Zero 这样的 AI 训练方式能否成为行业标准?未来 AI 推理是否可以完全摆脱人工监督?欢迎在评论区交流你的看法! 😊
相关文章:

DeepSeek R1-Zero vs. R1:强化学习推理的技术突破与应用前景
📌 引言:AI 推理的新时代 近年来,大语言模型(LLM) 的规模化扩展成为 AI 研究的主流方向。然而,LLM 的扩展是否真的能推动 通用人工智能(AGI) 的实现?DeepSeek 推出的 R1…...
matlab提取滚动轴承故障特征
为了精准、稳定地提取滚动轴承故障特征,提出了基于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C均值聚类(fuzzy C means clustering, FCM)进行故障识 别。对同一负荷下的已知故障信号进行变分模态分解,利用 奇异值分解技术进一步提…...
数据结构与算法学习笔记----容斥原理
数据结构与算法学习笔记----容斥原理 author: 明月清了个风 first publish time: 2025.1.30 ps⭐️介绍了容斥原理的相关内容以及一道对应的应用例题。 Acwing 890. 能被整除的数 [原题链接](890. 能被整除的数 - AcWing题库) 给定一个整数 n n n和 m m m个不同的质数 p 1 …...
Java 知识速记:全面解析 final 关键字
Java 知识速记:全面解析 final 关键字 什么是 final 关键字? final 关键字是 Java 中的一个修饰符。它可以用于类、方法和变量,其作用是限制对这些元素的修改。究竟如何限制?我们来逐个分析。 final 在变量中的用法 1. 声明常…...

(笔记+作业)书生大模型实战营春节卷王班---L0G2000 Python 基础知识
学员闯关手册:https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频:https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档:https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业:htt…...

9、Docker环境安装Nginx
一、拉取镜像 docker pull nginx:1.24.0二、创建映射目录 作用:是将docker中nginx的相关配置信息映射到外面,方便修改配置文件 1、创建目录 # cd home/ # mkdir nginx/ # cd nginx/ # mkdir conf html log2、生成容器 docker run -p 80:80 -d --name…...

受击反馈HitReact、死亡效果Death Dissolve、Floating伤害值Text(末尾附 客户端RPC )
受击反馈HitReact 设置角色受击标签 (GameplayTag基本了解待补充) 角色监听标签并设置移动速度 创建一个受击技能,并应用GE 实现设置角色的受击蒙太奇动画 实现角色受击时播放蒙太奇动画,为了保证通用性,将其设置为一个函数,并…...
572. 另一棵树的子树
前导题:100. 相同的树 回顾一下 判断两棵二叉树相同,根结点相同 且 左子树相同 且 右子树相同。 于是判断如下: 根结点都为null,返回true根结点不都为null,返回false根结点都不为null,但是值不相同&#…...
MATLAB中textBoundary函数用法
目录 语法 说明 示例 匹配文本的边界 匹配文本的结尾边界 对文本的边界求反 textBoundary函数的功能是匹配文本的开头或结尾。 语法 pat textBoundary pat textBoundary(type) 说明 pat textBoundary 创建与文本开头或结尾匹配的模式。textBoundary 可以使用 ~ 运算…...

vue3的路由配置
先找到Layout布局文件,从中找到左侧边栏,找到下述代码 <SidebarItem v-for"route in noHiddenRoutes" :key"route.path" :item"route" :base-path"route.path" />/** *菜单项 <SidebarItem>: *使用…...
在彼此的根系里呼吸
爱如草木,需以晨露滋养,而非绳索捆缚。一段健康的亲密关系,恰似两株根系相连却各自向阳的树——风起时枝叶相触,晴空下共享光影,却始终保有向地心深处生长的自由。那些纠缠的根须是信任编织的网,容得下沉默…...

深入理解若依RuoYi-Vue数据字典设计与实现
深入理解若依数据字典设计与实现 一、Vue2版本主要文件目录 组件目录src/components:数据字典组件、字典标签组件 工具目录src/utils:字典工具类 store目录src/store:字典数据 main.js:字典数据初始化 页面使用字典例子…...
深入MapReduce——从MRv1到Yarn
引入 我们前面篇章有提到,和MapReduce的论文不太一样。在Hadoop1.0实现里,每一个MapReduce的任务并没有一个独立的master进程,而是直接让调度系统承担了所有的worker 的master 的角色,这就是Hadoop1.0里的 JobTracker。在Hadoop1…...

Flutter_学习记录_Tab的简单Demo~真的很简单
1. Tab的简单使用了解 要实现tab(选项卡或者标签视图)需要用到三个组件: TabBarTabBarViewTabController 这一块,我也不知道怎么整理了,直接提供代码吧: import package:flutter/material.dart;void main() {runApp(MyApp());…...

CSS核心
CSS的引入方式 内部样式表是在 html 页面内部写一个 style 标签,在标签内部编写 CSS 代码控制整个 HTML 页面的样式。<style> 标签理论上可以放在 HTML 文档的任何地方,但一般会放在文档的 <head> 标签中。 <style> div { color: r…...
Deepseek本地部署(ollama+open-webui)
ollama 首先是安装ollama,这个非常简单 https://ollama.com/ 下载安装即可 open-webui 这个是为了提供一个ui,毕竟我们也不想在cmd和模型交互,很不方便。 第一,需要安装python3.11,必须是3.11(其他版…...

PaddleSeg 从配置文件和模型 URL 自动化运行预测任务
git clone https://github.com/PaddlePaddle/PaddleSeg.git# 在ipynb里面运行 cd PaddleSegimport sys sys.path.append(/home/aistudio/work/PaddleSeg)import os# 配置文件夹路径 folder_path "/home/aistudio/work/PaddleSeg/configs"# 遍历文件夹,寻…...

数据结构 队列
目录 前言 一,队列的基本知识 二,用数组实现队列 三,用链表实现队列 总结 前言 接下来我们将学习队列的知识,这会让我们了解队列的基本概念和基本的功能 一,队列的基本知识 (Queue) 我们先来研究队列的ADT,…...
Cocoa和Cocoa Touch是什么语言写成的?什么是Cocoa?编程语言中什么是框架?为什么苹果公司Cocoa类库有不少NS前缀?Swift编程语言?
Cocoa和Cocoa Touch是什么语言写成的? 二者主要都是用Objective-C语言编写而成的。 什么是Cocoa? Cocoa是苹果操作系统macOS和iOS上的应用程序开发框架集合,核心语言是Objective-C编程语言,在移动平台被称为Cocoa Touch,Cocoa包含多个子框架…...

登录管理——认证方案(JWT、拦截器、ThreadLocal、短信验证)
两种常见的认证方案 基于Session认证 登录状态信息保存在服务器内存中,若访问量增加,单台节点压力会较大集群环境下需要解决集群中的各种服务器登录状态共享问题 解决方案:将登录状态保存的Redis中,从Redis中查找登录状态 基于…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...