当前位置: 首页 > news >正文

【PyTorch】6.张量形状操作:在深度学习的 “魔方” 里,玩转张量形状

       

目录

1. reshape 函数的用法

2. transpose 和 permute 函数的使用

4. squeeze 和 unsqueeze 函数的用法

5. 小节


个人主页:Icomi

专栏地址:PyTorch入门

在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进 PyTorch 的世界,探索神经网络与人工智能的奥秘。本系列为PyTorch入门文章,若各位大佬想持续跟进,欢迎与我交流互关。

         咱们已经学习了张量的花式索引操作,它就像一把精巧的工具,让我们能够在数据的 “宝藏库” 里精准地提取和修改信息。我们接下来要学习—— 掌握对张量形状的操作。

        想象一下,我们即将搭建的网络模型就像一座宏伟而复杂的建筑,而数据则是构建这座建筑的基石。这些数据在我们的深度学习世界里,都是以张量的形式存在。在这座 “建筑” 中,不同的楼层(网络层)有着不同的功能和设计,它们之间的数据传递和运算就如同建筑中不同楼层之间的物资运输和协作。

        每一层网络对数据的处理方式都不尽相同,这就导致数据在网络层与层之间流动时,会以不同的形状(shape)进行表现和运算。比如说,有的层可能接收的是二维的张量数据,经过处理后输出一个三维的张量,就像把方形的积木经过加工变成了一个立体的模型

        如果我们不掌握对张量形状的操作,就好比一个建筑工人不熟悉不同建筑材料的尺寸和拼接方式,那么在搭建这座 “网络建筑” 时,各层之间的数据连接就会出现问题,就像积木无法正确拼接,最终导致整个建筑摇摇欲坠。

        为了能够更好地处理网络各层之间的数据连接,顺利搭建出稳固而强大的网络模型,掌握对张量形状的操作就显得尤为重要。接下来,我们就一同深入学习如何巧妙地调整和管理张量的形状,让我们在深度学习的建筑之路上稳步前行。

1. reshape 函数的用法

reshape 函数可以在保证张量数据不变的前提下改变数据的维度,将其转换成指定的形状,在后面的神经网络学习时,会经常使用该函数来调节数据的形状,以适配不同网络层之间的数据传递。

import torch
import numpy as npdef tensor_shape_operations():# 创建一个二维张量tensor = torch.tensor([[10, 20, 30], [40, 50, 60]])# 1. 使用 shape 属性或者 size 方法都可以获得张量的形状print(f"使用 shape 属性获取的形状: {tensor.shape},第 0 维大小: {tensor.shape[0]},第 1 维大小: {tensor.shape[1]}")print(f"使用 size 方法获取的形状: {tensor.size()},第 0 维大小: {tensor.size(0)},第 1 维大小: {tensor.size(1)}")# 2. 使用 reshape 函数修改张量形状reshaped_tensor = tensor.reshape(1, 6)print(f"修改形状后的张量形状: {reshaped_tensor.shape}")if __name__ == '__main__':tensor_shape_operations()

需要注意的是,转换前后的两个形状元素个数要相同

import torchdef test():torch.manual_seed(0)data = torch.randint(0, 10, [4, 5])# 查看张量的形状print(data.shape, data.shape[0], data.shape[1])print(data.size(), data.size(0), data.size(1))# 修改张量的形状new_data = data.reshape(2, 10)print(new_data)# 注意: 转换之后的形状元素个数得等于原来张量的元素个数# new_data = data.reshape(1, 10)# print(new_data)# 使用-1代替省略的形状new_data = data.reshape(5, -1)print(new_data)new_data = data.reshape(-1, 2)print(new_data)if __name__ == '__main__':test()

2. transpose 和 permute 函数的使用

transpose 函数可以实现交换张量形状的指定维度, 例如: 一个张量的形状为 (2, 3, 4) 可以通过 transpose 函数把 3 和 4 进行交换, 将张量的形状变为 (2, 4, 3)

permute 函数可以一次交换更多的维度。

import torch
import numpy as npdef test():data = torch.tensor(np.random.randint(0, 10, [3, 4, 5]))print('data shape:', data.size())# 1. 交换1和2维度new_data = torch.transpose(data, 1, 2)print('data shape:', new_data.size())# 2. 将 data 的形状修改为 (4, 5, 3)new_data = torch.transpose(data, 0, 1)new_data = torch.transpose(new_data, 1, 2)print('new_data shape:', new_data.size())# 3. 使用 permute 函数将形状修改为 (4, 5, 3)new_data = torch.permute(data, [1, 2, 0])print('new_data shape:', new_data.size())if __name__ == '__main__':test()

4. squeeze 和 unsqueeze 函数的用法

squeeze 函数用删除 shape 为 1 的维度,unsqueeze 在每个维度添加 1, 以增加数据的形状

import torch
import numpy as npdef test():data = torch.tensor(np.random.randint(0, 10, [1, 3, 1, 5]))print('data shape:', data.size())# 1. 去掉值为1的维度new_data = data.squeeze()print('new_data shape:', new_data.size())  # torch.Size([3, 5])# 2. 去掉指定位置为1的维度,注意: 如果指定位置不是1则不删除new_data = data.squeeze(2)print('new_data shape:', new_data.size())  # torch.Size([3, 5])# 3. 在2维度增加一个维度new_data = data.unsqueeze(-1)print('new_data shape:', new_data.size())  # torch.Size([3, 1, 5, 1])if __name__ == '__main__':test()

5. 小节

本小节我们学习了经常使用的关于张量形状的操作,我们用到的主要函数有:

  1. reshape 函数可以在保证张量数据不变的前提下改变数据的维度.
  2. transpose 函数可以实现交换张量形状的指定维度, permute 可以一次交换更多的维度.
  3. view 函数也可以用于修改张量的形状, 但是它要求被转换的张量内存必须连续,所以一般配合 contiguous 函数使用.
  4. squeeze 和 unsqueeze 函数可以用来增加或者减少维度.

相关文章:

【PyTorch】6.张量形状操作:在深度学习的 “魔方” 里,玩转张量形状

目录 1. reshape 函数的用法 2. transpose 和 permute 函数的使用 4. squeeze 和 unsqueeze 函数的用法 5. 小节 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架&am…...

大模型GUI系列论文阅读 DAY4续:《Large Language Model Agent for Fake News Detection》

摘要 在当前的数字时代,在线平台上虚假信息的迅速传播对社会福祉、公众信任和民主进程构成了重大挑战,并影响着关键决策和公众舆论。为应对这些挑战,自动化假新闻检测机制的需求日益增长。 预训练的大型语言模型(LLMs&#xff0…...

论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅

1.论文链接:Modeling Linkage Disequilibrium and Performing Association Studies through Probabilistic Graphical Models: a Visiting Tour of Recent Advances 摘要: 本章对概率图模型(PGMs)的最新进展进行了深入的回顾&…...

python小知识-typing注解你的程序

python小知识-typing注解你的程序 1. Typing的简介 typing 是 Python 的一个标准库,它提供了类型注解的支持,但并不会强制类型检查。类型注解在 Python 3.5 中引入,并在后续版本中得到了增强和扩展。typing 库允许开发者为变量、函数参数和…...

git基础使用--1--版本控制的基本概念

git基础使用–1–版本控制的基本概念 1.版本控制的需求背景,即为啥需要版本控制 先说啥叫版本,这个就不多说了吧,我们写代码的时候肯定不可能一蹴而就,肯定是今天写一点,明天写一点,对于项目来讲&#xff…...

“新月智能武器系统”CIWS,开启智能武器的新纪元

新月人物传记:人物传记之新月篇-CSDN博客 相关文章链接:星际战争模拟系统:新月的编程之道-CSDN博客 新月智能护甲系统CMIA--未来战场的守护者-CSDN博客 “新月之智”智能战术头盔系统(CITHS)-CSDN博客 目录 智能武…...

JVM运行时数据区域-附面试题

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域 有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而一直存在,有些区域则是 依赖用户线程的启动和结束而建立和销毁。 1. 程序计…...

增删改查(CRUD)操作

文章目录 MySQL系列:1.CRUD简介2.Create(创建)2.1单行数据全列插入2.2 单行数据指定插入2.3 多⾏数据指定列插⼊ 3.Retrieve(读取)3.1 Select查询3.1.1 全列查询3.1.2 指定列查询3.1.3 查询字段为表达式(都是临时表不会对原有表数据产生影响)…...

Vue.js `Suspense` 和异步组件加载

Vue.js Suspense 和异步组件加载 今天我们来聊聊 Vue 3 中的一个强大特性&#xff1a;<Suspense> 组件&#xff0c;以及它如何帮助我们更优雅地处理异步组件加载。如果你曾在 Vue 项目中处理过异步组件加载&#xff0c;那么这篇文章将为你介绍一种更简洁高效的方式。 什…...

HTB:LinkVortex[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用gobuster对靶机进行路径FUZZ 使用ffuf堆靶机…...

Linux命令入门

Linux命令入门 ls命令 ls命令的作用是列出目录下的内容&#xff0c;语法细节如下: 1s[-a -l -h] [Linux路径] -a -l -h是可选的选项 Linux路径是此命令可选的参数 当不使用选项和参数,直接使用ls命令本体,表示:以平铺形式,列出当前工作目录下的内容 ls命令的选项 -a -a选项&a…...

【问题】Chrome安装不受支持的扩展 解决方案

此扩展程序已停用&#xff0c;因为它已不再受支持 Chromium 建议您移除它。详细了解受支持的扩展程序 此扩展程序已停用&#xff0c;因为它已不再受支持 详情移除 解决 1. 解压扩展 2.打开manifest.json 3.修改版本 将 manifest_version 改为3及以上 {"manifest_ver…...

【题解】AtCoder Beginner Contest ABC391 D Gravity

题目大意 原题面链接 在一个 1 0 9 W 10^9\times W 109W 的平面里有 N N N 个方块。我们用 ( x , y ) (x,y) (x,y) 表示第 x x x 列从下往上数的 y y y 个位置。第 i i i 个方块的位置是 ( x i , y i ) (x_i,y_i) (xi​,yi​)。现在执行无数次操作&#xff0c;每一次…...

使用 SpringBoot+Thymeleaf 模板引擎进行 Web 开发

目录 一、什么是 Thymeleaf 模板引擎 二、Thymeleaf 模板引擎的 Maven 坐标 三、配置 Thymeleaf 四、访问页面 五、访问静态资源 六、Thymeleaf 使用示例 七、Thymeleaf 常用属性 前言 在现代 Web 开发中&#xff0c;模板引擎被广泛用于将动态内容渲染到静态页面中。Thy…...

【Java异步编程】CompletableFuture综合实战:泡茶喝水与复杂的异步调用

文章目录 一. 两个异步任务的合并&#xff1a;泡茶喝水二. 复杂的异步调用&#xff1a;结果依赖&#xff0c;以及异步执行调用等 一. 两个异步任务的合并&#xff1a;泡茶喝水 下面的代码中我们实现泡茶喝水。这里分3个任务&#xff1a;任务1负责洗水壶、烧开水&#xff0c;任…...

Nginx知识

nginx 精简的配置文件 worker_processes 1; # 可以理解为一个内核一个worker # 开多了可能性能不好events {worker_connections 1024; } # 一个 worker 可以创建的连接数 # 1024 代表默认一般不用改http {include mime.types;# 代表引入的配置文件# mime.types 在 ngi…...

Unity开发游戏使用XLua的基础

Unity使用Xlua的常用编码方式&#xff0c;做一下记录 1、C#调用lua 1、Lua解析器 private LuaEnv env new LuaEnv();//保持它的唯一性void Start(){env.DoString("print(你好lua)");//env.DoString("require(Main)"); 默认在resources文件夹下面//帮助…...

AI-ISP论文Learning to See in the Dark解读

论文地址&#xff1a;Learning to See in the Dark 图1. 利用卷积网络进行极微光成像。黑暗的室内环境。相机处的照度小于0.1勒克斯。索尼α7S II传感器曝光时间为1/30秒。(a) 相机在ISO 8000下拍摄的图像。(b) 相机在ISO 409600下拍摄的图像。该图像存在噪点和色彩偏差。©…...

OpenCV:开运算

目录 1. 简述 2. 用腐蚀和膨胀实现开运算 2.1 代码示例 2.2 运行结果 3. 开运算接口 3.1 参数详解 3.2 代码示例 3.3 运行结果 4. 开运算应用场景 5. 注意事项 6. 总结 相关阅读 OpenCV&#xff1a;图像的腐蚀与膨胀-CSDN博客 OpenCV&#xff1a;闭运算-CSDN博客 …...

38. RTC实验

一、RTC原理详解 1、6U内部自带到了一个RTC外设&#xff0c;确切的说是SRTC。6U和6ULL的RTC内容在SNVS章节。6U的RTC分为LP和HP。LP叫做SRTC&#xff0c;HP是RTC&#xff0c;但是HP的RTC掉电以后数据就丢失了&#xff0c;即使用了纽扣电池也没用。所以必须要使用LP&#xff0c…...

Flutter 新春第一弹,Dart 宏功能推进暂停,后续专注定制数据处理支持

在去年春节&#xff0c;Flutter 官方发布了宏&#xff08;Macros&#xff09;编程的原型支持&#xff0c; 同年的 5 月份在 Google I/O 发布的 Dart 3.4 宣布了宏的实验性支持&#xff0c;但是对于 Dart 内部来说&#xff0c;从启动宏编程实验开始已经过去了几年&#xff0c;但…...

巴菲特价值投资思想的核心原则

巴菲特价值投资思想的核心原则 关键词&#xff1a;安全边际、长期投资、内在价值、管理团队、经济护城河、简单透明 摘要&#xff1a;本文深入探讨了巴菲特价值投资思想的核心原则&#xff0c;包括安全边际、长期投资、企业内在价值、优秀管理团队、经济护城河和简单透明的业务…...

C 或 C++ 中用于表示常量的后缀:1ULL

1ULL 是一个在 C 或 C 中用于表示常量的后缀&#xff0c;它具体指示编译器将这个数值视为特定类型的整数。让我们详细解释一下&#xff1a; 1ULL 的含义 1: 这是最基本的部分&#xff0c;表示数值 1。U: 表示该数值是无符号&#xff08;Unsigned&#xff09;的。这意味着它只…...

vue3中el-input无法获得焦点的问题

文章目录 现象两次nextTick()加setTimeout()解决结论 现象 el-input被外层div包裹了&#xff0c;设置autofocus不起作用&#xff1a; <el-dialog v-model"visible" :title"title" :append-to-bodytrue width"50%"><el-form v-model&q…...

程序诗篇里的灵动笔触:指针绘就数据的梦幻蓝图<3>

大家好啊&#xff0c;我是小象٩(๑ω๑)۶ 我的博客&#xff1a;Xiao Xiangζั͡ޓއއ 很高兴见到大家&#xff0c;希望能够和大家一起交流学习&#xff0c;共同进步。 今天我们来对上一节做一些小补充&#xff0c;了解学习一下assert断言&#xff0c;指针的使用和传址调用…...

(三)QT——信号与槽机制——计数器程序

目录 前言 信号&#xff08;Signal&#xff09;与槽&#xff08;Slot&#xff09;的定义 一、系统自带的信号和槽 二、自定义信号和槽 三、信号和槽的扩展 四、Lambda 表达式 总结 前言 信号与槽机制是 Qt 中的一种重要的通信机制&#xff0c;用于不同对象之间的事件响…...

Qt 5.14.2 学习记录 —— 이십이 QSS

文章目录 1、概念2、基本语法3、给控件应用QSS设置4、选择器1、子控件选择器2、伪类选择器 5、样式属性box model 6、实例7、登录界面 1、概念 参考了CSS&#xff0c;都是对界面的样式进行设置&#xff0c;不过功能不如CSS强大。 可通过QSS设置样式&#xff0c;也可通过C代码…...

Hot100之哈希

1两数之和 题目 思路解析 解法1--两次循环 解法2--哈希表一次循环 代码 解法1--两次循环 class Solution {public int[] twoSum(int[] nums, int target) {int nums1[] new int[2];int length nums.length;for (int i 0; i < length; i) {for (int j i 1; j < …...

油漆面积——蓝桥杯

1.题目描述 X 星球的一批考古机器人正在一片废墟上考古。 该区域的地面坚硬如石、平整如镜。 管理人员为方便&#xff0c;建立了标准的直角坐标系。 每个机器人都各有特长、身怀绝技。它们感兴趣的内容也不相同。 经过各种测量&#xff0c;每个机器人都会报告一个或多个矩…...

深度解析:网站快速收录与服务器性能的关系

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/37.html 网站快速收录与服务器性能之间存在着密切的关系。服务器作为网站运行的基础设施&#xff0c;其性能直接影响到搜索引擎对网站的抓取效率和收录速度。以下是对这一关系的深度解析&am…...