当前位置: 首页 > news >正文

NCCL、HCCL、通信、优化

文章目录

    • 从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理!
    • 通信实现方式:机器内通信、机器间通信
    • 通信实现方式:通讯协调
    • 通信实现方式:机器内通信:PCIe
    • 通信实现方式:机器内通信:NVLink
    • 通信实现方式:机器间通信:RDMA(直连模式)
    • 通信协调:软件篇
    • 通信协调:软件篇:MPI
    • 通信协调:软件篇:NCCL
    • 点对点通信、集合式通信

从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理!

通信实现方式:机器内通信、机器间通信

计算机通网络通讯中最重要的两个衡量指标是:带宽、延迟

在这里插入图片描述

内存共享:比如 多个应用共享手机里面的同一块内存
PCIe:最明显的方式就是 gpu 与 cpu 之间的通信,大部分都通过之间的PCIe插槽进行的
NVLink(直连模式):GPU 与 GPU 之间进行一个互通

在这里插入图片描述
Q:不同机柜之间的GPU的访问,不是通过NVSwitch进行全互联的吗。那这个机器间的通信,都传输什么信息呢?通讯、互传数据、等待和同步相关的问题,这些信息是走什么传输的呢?
---- 如果是NVLink通信的话,它应该还是属于 机器内通信,而不是机器间通讯(TCP/IP、RDMA)

蓝色的线:通过网线进行连接
AI集群里面,可能更多的用到 RDMA 的网络模型通信


通信实现方式:通讯协调

在这里插入图片描述

通信实现方式:机器内通信:PCIe

在这里插入图片描述

通信实现方式:机器内通信:NVLink

在这里插入图片描述


通信实现方式:机器间通信:RDMA(直连模式)

在这里插入图片描述
在这里插入图片描述
(1)左边的图是TCP/IP,右边的是RDMA
(2)左边的几个蓝色方框,在传递的时候 需要经过好几次的用户的内存拷贝,对大数据执行起来会非常的缓慢,数据量越大的时候,这个延迟是很难去接受的!
(3)而RDMA新的协议,就是用户直接跳过kernel层,直接传到远端的服务器,数据绕过CPU,直接通过RDMA设备,对远端的虚拟内存直接进行访问读和写;

(4)既然是机器间通信,那么不同机器间是通过以太网连接的
(5)Q:RDMA是通过网线连接的吗?
在这里插入图片描述


通信协调:软件篇

在这里插入图片描述


通信协调:软件篇:MPI

在这里插入图片描述


通信协调:软件篇:NCCL

在这里插入图片描述
(1)对网络拓扑进行一个感知,topo是长什么样子的,回环是怎么组织的
(2)对网络拓扑进行一个搜索,找到一个最好的通信的策略
(3)使能CUDA的kernel 对数据进行通信

在这里插入图片描述


点对点通信、集合式通信

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

相关文章:

NCCL、HCCL、通信、优化

文章目录 从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理!通信实现方式:机器内通信、机器间通信通信实现方式:通讯协调通信实现方式:机器内通信:PCIe通信实现方式:机器内通信:NVLink通信实现…...

unity学习21:Application类与文件存储的位置

目录 1 unity是一个跨平台的引擎 1.1 使用 Application类,去读写文件 1.2 路径特点 1.2.1 相对位置/相对路径: 1.2.2 固定位置/绝对路径: 1.3 测试方法,仍然挂一个C#脚本在gb上 2 游戏数据文件夹路径(只读&…...

17 一个高并发的系统架构如何设计

高并发系统的理解 第一:我们设计高并发系统的前提是该系统要高可用,起码整体上的高可用。 第二:高并发系统需要面对很大的流量冲击,包括瞬时的流量和黑客攻击等 第三:高并发系统常见的需要考虑的问题,如内存不足的问题,服务抖动的…...

Spring Boot 实例解析:配置文件

SpringBoot 的热部署&#xff1a; Spring 为开发者提供了一个名为 spring-boot-devtools 的模块来使用 SpringBoot 应用支持热部署&#xff0c;提高开发者的效率&#xff0c;无需手动重启 SpringBoot 应用引入依赖&#xff1a; <dependency> <groupId>org.springfr…...

pytorch图神经网络处理图结构数据

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 图神经网络&#xff08;Graph Neural Networks&#xff0c;GNNs&#xff09;是一类能够处理图结构数据的深度学习模型。图结构数据由节点&#xff08;vertices&#xff09;和边&#xff08;edges&#xff09;组成&a…...

计算机网络一点事(23)

传输层 端口作用&#xff1a;标识主机特定进程&#xff0c;TCP&#xff0c;UDP协议 端口号分类&#xff1a;服务器&#xff1a;0-1023&#xff0c;熟知 1024-49151 登记 客户端&#xff1a;49152-65535 功能&#xff1a;实现端到端&#xff0c;进程到进程的通信&#xff0c…...

(9)下:学习与验证 linux 里的 epoll 对象里的 EPOLLIN、 EPOLLHUP 与 EPOLLRDHUP 的不同。小例子的实验

&#xff08;4&#xff09;本实验代码的蓝本&#xff0c;是伊圣雨老师里的课本里的代码&#xff0c;略加改动而来的。 以下是 服务器端的代码&#xff1a; 每当收到客户端的报文时&#xff0c;就测试一下对应的 epoll 事件里的事件标志&#xff0c;不读取报文内容&#xff0c;…...

DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?

deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别&#xff1f;码笔记mabiji.com分享&#xff1a;1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型&#xff0c;671B是基础大模型&#xff0c;它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本…...

一、html笔记

(一)前端概述 1、定义 前端是Web应用程序的前台部分,运行在PC端、移动端等浏览器上,展现给用户浏览的网页。通过HTML、CSS、JavaScript等技术实现,是用户能够直接看到和操作的界面部分。上网就是下载html文档,浏览器是一个解释器,运行从服务器下载的html文件,解析html、…...

AI大模型开发原理篇-2:语言模型雏形之词袋模型

基本概念 词袋模型&#xff08;Bag of Words&#xff0c;简称 BOW&#xff09;是自然语言处理和信息检索等领域中一种简单而常用的文本表示方法&#xff0c;它将文本看作是一组单词的集合&#xff0c;并忽略文本中的语法、词序等信息&#xff0c;仅关注每个词的出现频率。 文本…...

基于微信小程序的实习记录系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

【LLM】DeepSeek-R1-Distill-Qwen-7B部署和open webui

note DeepSeek-R1-Distill-Qwen-7B 的测试效果很惊艳&#xff0c;CoT 过程可圈可点&#xff0c;25 年应该值得探索更多端侧的硬件机会。 文章目录 note一、下载 Ollama二、下载 Docker三、下载模型四、部署 open webui 一、下载 Ollama 访问 Ollama 的官方网站 https://ollam…...

【Elasticsearch】 Intervals Query

Elasticsearch Intervals Query 返回基于匹配术语的顺序和接近度的文档。 intervals 查询使用 匹配规则&#xff0c;这些规则由一小组定义构建而成。这些规则然后应用于指定 field 中的术语。 这些定义生成覆盖文本中术语的最小间隔序列。这些间隔可以进一步由父源组合和过滤…...

DeepSeek技术深度解析:从不同技术角度的全面探讨

DeepSeek技术深度解析&#xff1a;从不同技术角度的全面探讨 引言 DeepSeek是一个集成了多种先进技术的平台&#xff0c;旨在通过深度学习和其他前沿技术来解决复杂的问题。本文将从算法、架构、数据处理以及应用等不同技术角度对DeepSeek进行详细分析。 一、算法层面 深度学…...

Docker 部署 Starrocks 教程

Docker 部署 Starrocks 教程 StarRocks 是一款高性能的分布式分析型数据库&#xff0c;主要用于 OLAP&#xff08;在线分析处理&#xff09;场景。它最初是由百度的开源团队开发的&#xff0c;旨在为大数据分析提供一个高效、低延迟的解决方案。StarRocks 支持实时数据分析&am…...

【LLM-agent】(task6)构建教程编写智能体

note 构建教程编写智能体 文章目录 note一、功能需求二、相关代码&#xff08;1&#xff09;定义生成教程的目录 Action 类&#xff08;2&#xff09;定义生成教程内容的 Action 类&#xff08;3&#xff09;定义教程编写智能体&#xff08;4&#xff09;交互式操作调用教程编…...

29.Word:公司本财年的年度报告【13】

目录 NO1.2.3.4 NO5.6.7​ NO8.9.10​ NO1.2.3.4 另存为F12&#xff1a;考生文件夹&#xff1a;Word.docx选中绿色标记的标题文本→样式对话框→单击右键→点击样式对话框→单击右键→修改→所有脚本→颜色/字体/名称→边框&#xff1a;0.5磅、黑色、单线条&#xff1a;点…...

14 2D矩形模块( rect.rs)

一、 rect.rs源码 // Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENS…...

【Unity3D】实现2D角色/怪物死亡消散粒子效果

核心&#xff1a;这是一个Unity粒子系统自带的一种功能&#xff0c;可将粒子生成控制在一个Texture图片网格范围内&#xff0c;并且粒子颜色会自动采样图片的像素点颜色&#xff0c;之后则是粒子编辑出消散效果。 Particle System1物体&#xff08;爆发式随机速度扩散10000个粒…...

Linux - 进程间通信(3)

目录 3、解决遗留BUG -- 边关闭信道边回收进程 1&#xff09;解决方案 2&#xff09;两种方法相比较 4、命名管道 1&#xff09;理解命名管道 2&#xff09;创建命名管道 a. 命令行指令 b. 系统调用方法 3&#xff09;代码实现命名管道 构建类进行封装命名管道&#…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...