深度学习 | 表示学习 | 卷积神经网络 | Batch Normalization 在 CNN 中的示例 | 20
如是我闻: 让我们来用一个具体的例子说明 Batch Normalization 在 CNN 里的计算过程,特别是如何对每个通道(channel)进行归一化。
1. 假设我们有一个 CNN 层的输出
假设某个 CNN 层的输出是一个 4D 张量,形状为:
X = ( m , C , H , W ) X = (m, C, H, W) X=(m,C,H,W)
其中:
- m = 2 m = 2 m=2(batch 大小 = 2,即有 2 张图片)
- C = 3 C = 3 C=3(通道数 = 3,比如 RGB 三个通道)
- H = 2 , W = 2 H = 2, W = 2 H=2,W=2(特征图大小是 2 × 2 2 \times 2 2×2)
现在,我们假设输入数据如下(仅展示一个通道的数据):
X = [ 样本 1: [ [ 1 , 2 ] [ 3 , 4 ] [ 5 , 6 ] [ 7 , 8 ] ] 样本 2: [ [ 2 , 3 ] [ 4 , 5 ] [ 6 , 7 ] [ 8 , 9 ] ] ] X = \begin{bmatrix} \text{样本 1:} & \begin{bmatrix} [1, 2] & [3, 4] \\ [5, 6] & [7, 8] \end{bmatrix} \\ \text{样本 2:} & \begin{bmatrix} [2, 3] & [4, 5] \\ [6, 7] & [8, 9] \end{bmatrix} \end{bmatrix} X= 样本 1:样本 2:[[1,2][5,6][3,4][7,8]][[2,3][6,7][4,5][8,9]]
这个数据表示的是 一个 batch(2 张图片),每张图片有一个 2 × 2 2 \times 2 2×2 特征图。
2. 计算均值和方差
(1) 计算均值
我们需要对所有样本的这个通道进行归一化,所以我们计算该通道在所有样本上的均值:
μ B = 1 m × H × W ∑ i = 1 m ∑ j = 1 H ∑ k = 1 W x i , j , k \mu_B = \frac{1}{m \times H \times W} \sum_{i=1}^{m} \sum_{j=1}^{H} \sum_{k=1}^{W} x_{i, j, k} μB=m×H×W1i=1∑mj=1∑Hk=1∑Wxi,j,k
代入数据:
μ B = 1 2 × 2 × 2 ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) \mu_B = \frac{1}{2 \times 2 \times 2} (1+2+3+4+5+6+7+8 + 2+3+4+5+6+7+8+9) μB=2×2×21(1+2+3+4+5+6+7+8+2+3+4+5+6+7+8+9)
= 76 8 = 9.5 = \frac{76}{8} = 9.5 =876=9.5
(2) 计算方差
方差的计算公式:
σ B 2 = 1 m × H × W ∑ i = 1 m ∑ j = 1 H ∑ k = 1 W ( x i , j , k − μ B ) 2 \sigma_B^2 = \frac{1}{m \times H \times W} \sum_{i=1}^{m} \sum_{j=1}^{H} \sum_{k=1}^{W} (x_{i, j, k} - \mu_B)^2 σB2=m×H×W1i=1∑mj=1∑Hk=1∑W(xi,j,k−μB)2
代入计算:
σ B 2 = 1 8 ( ( 1 − 4.75 ) 2 + ( 2 − 4.75 ) 2 + ( 3 − 4.75 ) 2 + ( 4 − 4.75 ) 2 + ⋯ + ( 9 − 4.75 ) 2 ) \sigma_B^2 = \frac{1}{8} \left( (1-4.75)^2 + (2-4.75)^2 + (3-4.75)^2 + (4-4.75)^2 + \dots + (9-4.75)^2 \right) σB2=81((1−4.75)2+(2−4.75)2+(3−4.75)2+(4−4.75)2+⋯+(9−4.75)2)
= 1 8 ( 14.06 + 7.56 + 3.06 + 0.56 + 0.56 + 3.06 + 7.56 + 14.06 ) = \frac{1}{8} \left( 14.06 + 7.56 + 3.06 + 0.56 + 0.56 + 3.06 + 7.56 + 14.06 \right) =81(14.06+7.56+3.06+0.56+0.56+3.06+7.56+14.06)
= 50.44 8 = 6.305 = \frac{50.44}{8} = 6.305 =850.44=6.305
3. 归一化数据
标准化公式:
x ^ i , j , k = x i , j , k − μ B σ B 2 + ϵ \hat{x}_{i,j,k} = \frac{x_{i,j,k} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} x^i,j,k=σB2+ϵxi,j,k−μB
假设 ϵ = 1 0 − 5 \epsilon = 10^{-5} ϵ=10−5很小,可以忽略不计,那么:
x ^ i , j , k = x i , j , k − 4.75 6.305 \hat{x}_{i,j,k} = \frac{x_{i,j,k} - 4.75}{\sqrt{6.305}} x^i,j,k=6.305xi,j,k−4.75
计算部分归一化的值(只展示部分):
x ^ 1 , 1 , 1 = 1 − 4.75 6.305 ≈ − 3.75 2.51 ≈ − 1.49 \hat{x}_{1,1,1} = \frac{1 - 4.75}{\sqrt{6.305}} \approx \frac{-3.75}{2.51} \approx -1.49 x^1,1,1=6.3051−4.75≈2.51−3.75≈−1.49
x ^ 1 , 1 , 2 = 2 − 4.75 2.51 ≈ − 1.10 \hat{x}_{1,1,2} = \frac{2 - 4.75}{2.51} \approx -1.10 x^1,1,2=2.512−4.75≈−1.10
x ^ 2 , 2 , 2 = 9 − 4.75 2.51 ≈ 1.70 \hat{x}_{2,2,2} = \frac{9 - 4.75}{2.51} \approx 1.70 x^2,2,2=2.519−4.75≈1.70
经过这个过程,所有特征都会变成均值 0,方差 1。
4. 通过可学习参数进行缩放和平移
为了让网络有更强的表达能力,BN 引入了两个可学习参数:
y i , j , k = γ x ^ i , j , k + β y_{i,j,k} = \gamma \hat{x}_{i,j,k} + \beta yi,j,k=γx^i,j,k+β
- γ \gamma γ 控制缩放(scale)。
- β \beta β 控制偏移(shift)。
如果 γ = 2 , β = 0.5 \gamma = 2, \beta = 0.5 γ=2,β=0.5,那么:
y 1 , 1 , 1 = 2 × ( − 1.49 ) + 0.5 = − 2.48 y_{1,1,1} = 2 \times (-1.49) + 0.5 = -2.48 y1,1,1=2×(−1.49)+0.5=−2.48
y 1 , 1 , 2 = 2 × ( − 1.10 ) + 0.5 = − 1.70 y_{1,1,2} = 2 \times (-1.10) + 0.5 = -1.70 y1,1,2=2×(−1.10)+0.5=−1.70
y 2 , 2 , 2 = 2 × ( 1.70 ) + 0.5 = 3.90 y_{2,2,2} = 2 \times (1.70) + 0.5 = 3.90 y2,2,2=2×(1.70)+0.5=3.90
5. 结果解释
(1) 归一化后,所有数据均值接近 0,方差接近 1
- 这样可以稳定训练过程,防止梯度消失或梯度爆炸。
(2) 通过 γ \gamma γ 和 β \beta β 让网络恢复部分信息
- 这样可以确保 BN 不会限制网络的表达能力,同时还能优化训练。
6. 总的来说
- Batch Normalization 在 CNN 里是对每个通道单独归一化,而不是整个输入张量归一化。
- 计算过程:
- 计算当前 batch 每个通道的均值和方差。
- 对该通道的所有数据进行归一化,使其均值为 0,方差为 1。
- 通过可学习参数 γ \gamma γ 和 β \beta β 进行缩放和平移,使得网络仍然能够学习适应的特征分布。
- 最终作用:
- 减少 Internal Covariate Shift(内部协变量偏移)。
- 加速收敛,提高稳定性。
- 降低对超参数(如学习率、初始化)的依赖。
以上
相关文章:

深度学习 | 表示学习 | 卷积神经网络 | Batch Normalization 在 CNN 中的示例 | 20
如是我闻: 让我们来用一个具体的例子说明 Batch Normalization 在 CNN 里的计算过程,特别是如何对每个通道(channel)进行归一化。 1. 假设我们有一个 CNN 层的输出 假设某个 CNN 层的输出是一个 4D 张量,形状为&#…...
最短木板长度
最短木板长度 真题目录: 点击去查看 E 卷 100分题型 题目描述 小明有 n 块木板,第 i ( 1 ≤ i ≤ n ) 块木板长度为 ai。 小明买了一块长度为 m 的木料,这块木料可以切割成任意块,拼接到已有的木板上,用来加长木板。 小明想让最…...

团体程序设计天梯赛-练习集——L1-034 点赞
前言 20分的题目题目不难,理解也不难,做起来有点问题 L1-034 点赞 微博上有个“点赞”功能,你可以为你喜欢的博文点个赞表示支持。每篇博文都有一些刻画其特性的标签,而你点赞的博文的类型,也间接刻画了你的特性。本…...

利用腾讯云cloud studio云端免费部署deepseek-R1
1. cloud studio 1.1 cloud studio介绍 Cloud Studio(云端 IDE)是基于浏览器的集成式开发环境,为开发者提供了一个稳定的云端工作站。支持CPU与GPU的访问。用户在使用 Cloud Studio 时无需安装,随时随地打开浏览器即可使用。Clo…...

LabVIEW的智能电源远程监控系统开发
在工业自动化与测试领域,电源设备的精准控制与远程管理是保障系统稳定运行的核心需求。传统电源管理依赖本地手动操作,存在响应滞后、参数调节效率低、无法实时监控等问题。通过集成工业物联网(IIoT)技术,实现电源设备…...

Docker深度解析:安装各大环境
安装 Nginx 实现负载均衡: 挂载 nginx html 文件: 创建过载目录: mkdir -p /data/nginx/{conf,conf.d,html,logs} 注意:在挂载前需要对 conf/nginx.conf 文件进行编写 worker_processes 1;events {worker_connections 1024; …...

牛客 - 链表相加(二)
描述 假设链表中每一个节点的值都在 0 - 9 之间,那么链表整体就可以代表一个整数。 给定两个这种链表,请生成代表两个整数相加值的结果链表。 数据范围:0≤n,m≤1000000,链表任意值 0≤val≤9 要求:空间复杂度 O(n)&am…...

GPU 硬件原理架构(一)
这张费米管线架构图能看懂了,整个GPU的架构基本就熟了。市面上有很多GPU厂家,他们产品的架构各不相同,但是核心往往差不多,整明白一了个基本上就可以触类旁通了。下面这张图信息量很大,可以结合博客GPU 英伟达GPU架构回…...
C/C++编译器
C/C 代码是不可跨平台的,Windows 和 Unix-like 有着不同的 API,C/C 在不同平台有着不同编译器。 MSVC Windows 平台,MSVC 是 Visual Studio 中自带的 C/C 编译器。 GCC Unix-like 平台,GCC 原名 GNU C Compiler,后…...

Immutable设计 SimpleDateFormat DateTimeFormatter
专栏系列文章地址:https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标: 理解不可变设计模式,时间format有线程安全要求的注意使用DateTimeFormatter 目录 ImmutableSimpleDateFormat 非线程安全可以synchronized解决&a…...

最新EFK(Elasticsearch+FileBeat+Kibana)日志收集
文章目录 1.EFK介绍2.操作前提3.FileBeat8.15下载&安装4.编写FileBeat配置文件5.启动FileBeat6.模拟实时日志数据生成7.查看索引(数据流)是否创建成功8.创建数据视图:9.查看数据视图10.使用KQL对采集的日志内容进行过滤11.给日志数据配置保留天数(扩展知识) 1.E…...
Vue 3 30天精进之旅:Day 15 - 插件和指令
欢迎来到“Vue 3 30天精进之旅”的第15天!今天我们将深入探讨Vue 3中的插件和自定义指令。这两个主题能够帮助我们扩展Vue的功能,使我们的应用更加灵活和强大。 一、插件概述 1. 什么是插件? 在Vue中,插件是一种功能扩展机制。…...
【实战篇】Android安卓本地离线实现视频检测人脸
实战篇Android安卓本地离线实现视频检测人脸 引言项目概述核心代码类介绍人脸检测流程项目地址总结 引言 在当今数字化时代,人脸识别技术已经广泛应用于各个领域,如安防监控、门禁系统、移动支付等。本文将以第三视角详细讲解如何基于bifan-wei-Face/De…...
【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-Chapter3-语言基础
三、语言基础 ECMAScript 的语法很大程度上借鉴了 C 语言和其他类 C 语言,如 Java 和 Perl。ECMAScript 中一切都区分大小写。无论是变量、函数名还是操作符,都区分大小写。 所谓标识符,就是变量、函数、属性或函数参数的名称。标识符可以由…...
(dpdk f-stack)-堆栈溢出-野指针-内存泄露(问题定位)
目的:解决堆栈溢出,野指针,内存泄露。 解决方法 [root@ test]# yum install libasan [root@ test]# cat test.c int main() { int array[10]; array[11] = 11; return 0; } [root@ test]# gcc -fsanitize=address -O1 -fno-omit-frame-pointer -g -O0 test.c -o test ./te…...

HTML5 教程之标签(3)
HTML5 <center> 标签 (已废弃) 定义和用法 <center> 标签对其包围的文本进行水平居中处理。HTML5不支持使用<center>标签,因此有关该标签的更多信息,请参考“HTML <center>标签”部分! 示例: <center>这个…...

【蓝桥】动态规划-简单-破损的楼梯
题目 解题思路 完整代码 #include <bits/stdc.h> using namespace std; const int N1e59; const long long p1e97; long long dp[N];//dp[i]表示走到第i级台阶的方案数 bool broken[N];//broken代表破损台阶的数组 int main() {int n,m;cin>>n>>m;for(int …...

如何自定义软件安装路径及Scoop包管理器使用全攻略
如何自定义软件安装路径及Scoop包管理器使用全攻略 一、为什么无法通过WingetUI自定义安装路径? 问题背景: WingetUI是Windows包管理器Winget的图形化工具,但无法直接修改软件的默认安装路径。原因如下: Winget设计限制…...

107,【7】buuctf web [CISCN2019 华北赛区 Day2 Web1]Hack World
这次先不进入靶场 看到红框里面的话就想先看看uuid是啥 定义与概念 UUID 是 Universally Unique Identifier 的缩写,即通用唯一识别码。它是一种由数字和字母组成的 128 位标识符,在理论上可以保证在全球范围内的唯一性。UUID 的设计目的是让分布式系…...

STM32 ADC单通道配置
硬件电路 接线图: ADC基本结构图 代码配置 根据基本结构框图 1.定义结构体变量 //定义结构体变量 GPIO_InitTypeDef GPIO_InitStructure;//定义GPIO结构体变量 ADC_InitTypeDef ADC_InitStructure; //定义ADC结构体变量 2.开启RCC时钟 ADC、GPIO的时钟&#x…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...

OPENCV图形计算面积、弧长API讲解(1)
一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积,这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能,常用的API…...

break 语句和 continue 语句
break语句和continue语句都具有跳转作用,可以让代码不按既有的顺序执行 break break语句用于跳出代码块或循环 1 2 3 4 5 6 for (var i 0; i < 5; i) { if (i 3){ break; } console.log(i); } continue continue语句用于立即终…...
Vuex:Vue.js 应用程序的状态管理模式
什么是Vuex? Vuex 是专门为 Vue.js 应用程序开发的状态管理模式 库。它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化。 在大型单页应用中,当多个组件共享状态时,简单的单向数据流…...

RabbitMQ work模型
Work 模型是 RabbitMQ 最基础的消息处理模式,核心思想是 多个消费者竞争消费同一个队列中的消息,适用于任务分发和负载均衡场景。同一个消息只会被一个消费者处理。 当一个消息队列绑定了多个消费者,每个消息消费的个数都是平摊的&a…...