堆的实现——堆的应用(堆排序)
文章目录
- 1.堆的实现
- 2.堆的应用--堆排序
大家在学堆的时候,需要有二叉树的基础知识,大家可以看我的二叉树文章:二叉树
1.堆的实现
如果有⼀个关键码的集合 K = {k0 , k1 , k2 , …,kn−1 } ,把它的所有元素按完全⼆叉树的顺序存储⽅
式存储,在⼀个⼀维数组中,并满⾜: Ki <= K2∗i+1 ( Ki >= K2∗i+1 且 Ki <= K2∗i+2 ),
i = 0、1、2… ,则称为⼩堆(或⼤堆)。将根结点最⼤的堆叫做最⼤堆或⼤根堆,根结点最⼩的堆
叫做最⼩堆或⼩根堆。
如下就是堆的例子:
堆有很多的应用,例如:①堆排序 ②TOP-K问题
堆的底层就是数组,我们主要实现如下接口:
//堆的初始化
void HeapInit(Heap* php);
// 堆的销毁
void HeapDestory(Heap* php);
// 堆的插入
void HeapPush(Heap* php, HPDataType x);
// 堆的删除
void HeapPop(Heap* php);
// 取堆顶的数据
HPDataType HeapTop(Heap* php);
// 堆的数据个数
int HeapSize(Heap* php);
// 堆的判空
int HeapEmpty(Heap* php);
堆结构:
typedef int HPDataType;typedef struct Heap
{HPDataType* _a;int _size;int _capacity;
}Heap;
对于堆的初始化和销毁很简单:
//堆的初始化
void HeapInit(Heap* php)
{assert(php);php->_a = NULL;php->_size = php->_capacity = 0;
}// 堆的销毁
void HeapDestory(Heap* php)
{assert(php);php->_capacity = php->_size = 0;free(php->_a);php->_a = NULL;
}
对于堆的插入,例如我们建一个小根堆,我们每次插入一个数,是把他放在堆尾的(即数组的最后一个元素),然后使用向上调整算法,
Q:什么是向上调整算法?
A:对于我们新插入来的数,我们把他放在堆的最后一个元素上,我们需要不断比较他(即孩子节点)与父节点谁小,若父节点小,则终止循环,若孩子节点小,则需要他和父节点交换位置,并循环下去比,代码如下:
//向上调整算法,建小堆
void AdjustUp(HPDataType* arr, int n)
{int child = n - 1;while (child > 0){int parent = (child - 1) >> 1;if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);}child = parent;}
}
所以,对于堆插入一个元素代码如下:
// 堆的插入
void HeapPush(Heap* php, HPDataType x)
{assert(php);//判断是否需要增容if (php->_capacity == php->_size){int newCapacity = php->_capacity == 0 ? 4 : 2 * php->_capacity;HPDataType* tmp = (HPDataType*)realloc(php->_a, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail");exit(-1);}php->_capacity = newCapacity;php->_a = tmp;}php->_a[php->_size++] = x;//向上调整算法AdjustUp(php->_a, php->_size);
}
对于堆的删除,也就是我们要把最小的那个元素pop出来,已知的是堆顶是最小的元素,我们只需要让堆顶元素和最后一个元素互换,然后size–,然后在执行向下调整算法即可:如下
//向下调整算法
void AdjustDown(HPDataType* arr, int n)
{int parent = 0;int child = parent * 2 + 1;while (child < n){if (child + 1 < n && arr[child + 1] < arr[child]) child = child + 1;if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);parent = child;child = parent * 2 + 1;}else break;}
}// 堆的删除
void HeapPop(Heap* php)
{assert(php);assert(!HeapEmpty(php));swap(php->_a[0], php->_a[php->_size - 1]);php->_size--;AdjustDown(php->_a, php->_size);
}
余下的接口:
// 取堆顶的数据
HPDataType HeapTop(Heap* php)
{assert(php);assert(!HeapEmpty(php));return php->_a[0];
}// 堆的数据个数
int HeapSize(Heap* php)
{assert(php);return php->_size;
}
// 堆的判空
int HeapEmpty(Heap* php)
{assert(php);return php->_size == 0 ? 1 : 0;
}
2.堆的应用–堆排序
我们想一想,给我们传入一个数组,让我们堆数组里面的元素进行排序,需要注意的是,向上调整算法和向下调整算法我们都要求除了他,其他的都是一个堆。也就是我们需要对每个数据都进行一遍调整算法,那么向上还是向下呢?我们来分析一下时间复杂度:
-
向上调整算法:我们需要从第一个元素开始都进行一遍向上调算法,
因此来说:==向上调整算法的时间复杂度是O(nlogn),==为什么这么高,我们可以想一下,月考后面的元素在二叉树上呈现的是越多的,而且他还要向上移动比较的次数更多,那他的复杂度不就高了吗 -
向下调整算法:这里,我们不需要从最后一个元素开始向下调整,我们只需要从最后一个非叶子节点开始向下调整算法即可,
因此向下调整算法的时间复杂度为:O(n)
注意:这里是向下调整算法建堆的时间复杂度是O(n),但是单单一个元素向下调整算法是O(logn)的。
因此对于堆排序,我们采用向下调整算法较优。
堆排序,大家可以参考我的这篇文章:堆排序
相关文章:

堆的实现——堆的应用(堆排序)
文章目录 1.堆的实现2.堆的应用--堆排序 大家在学堆的时候,需要有二叉树的基础知识,大家可以看我的二叉树文章:二叉树 1.堆的实现 如果有⼀个关键码的集合 K {k0 , k1 , k2 , …,kn−1 } ,把它的所有元素按完全⼆叉树…...

机器学习6-全连接神经网络2
机器学习6-全连接神经网络2-梯度算法改进 梯度下降算法存在的问题动量法与自适应梯度动量法一、动量法的核心思想二、动量法的数学表示三、动量法的作用四、动量法的应用五、示例 自适应梯度与RMSProp 权值初始化随机权值初始化Xavier初始化HE初始化(MSRA) 
基于 SpringBoot 的电影购票系统
基于SpringBoot的电影购票系统是一个集成了现代化Web开发技术的在线电影票务平台。以下是对该系统的详细介绍: 一、系统背景与意义 随着电影行业的快速发展和观众对观影体验的不断追求,电影票务管理面临着越来越多的挑战。传统的票务管理方式存在效率低…...
C++SLT(三)——list
目录 一、list的介绍二、list的使用list的定义方式 三、list的插入和删除push_back和pop_backpush_front和pop_frontinserterase 四、list的迭代器使用五、list的元素获取六、list的大小控制七、list的操作函数sort和reversemergeremoveremove_ifuniqueassignswap 一、list的介…...

C++ Primer 算术运算符
欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

数据结构-堆和PriorityQueue
1.堆(Heap) 1.1堆的概念 堆是一种非常重要的数据结构,通常被实现为一种特殊的完全二叉树 如果有一个关键码的集合K{k0,k1,k2,...,kn-1},把它所有的元素按照完全二叉树的顺序存储在一个一维数组中,如果满足ki<k2i…...

【玩转 Postman 接口测试与开发2_017】第13章:在 Postman 中实现契约测试(Contract Testing)与 API 接口验证(下)
《API Testing and Development with Postman》最新第二版封面 文章目录 第十三章 契约测试与 API 接口验证8 导入官方契约测试集合9 契约测试集合的详细配置9.1 env-apiKey 的创建与设置9.2 env-workspaceId 的设置9.3 Mock 服务器及 env-server 的配置9.4 API 测试实例的配置…...

R语言 | 使用 ComplexHeatmap 绘制热图,分区并给对角线分区加黑边框
目的:画热图,分区,给对角线分区添加黑色边框 建议直接看0和4。 0. 准备数据 # 安装并加载必要的包 #install.packages("ComplexHeatmap") # 如果尚未安装 library(ComplexHeatmap)# 使用 iris 数据集 #data(iris)# 选择数值列&a…...

React图标库: 使用React Icons实现定制化图标效果
React图标库: 使用React Icons实现定制化图标效果 图标库介绍 是一个专门为React应用设计的图标库,它包含了丰富的图标集合,覆盖了常用的图标类型,如FontAwesome、Material Design等。React Icons可以让开发者在React应用中轻松地添加、定制各…...

Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API
目前国内少有调用ChatGPT、Claude、Gemini等国外大模型API的库。 Python库sider_ai_api 提供了调用这些大模型的一个完整解决方案, 使得开发者能调用 sider.ai 的API,实现大模型的访问。 Sider是谷歌浏览器和Edge的插件,能调用ChatGPT、Clau…...
DeepSeek、哪吒和数据库:厚积薄发的力量
以下有部分来源于AI,毕竟我认为AI还不能替代,他只能是辅助 快速迭代是应用程序不是工程 在这个追求快速迭代、小步快跑的时代,我们似乎总是被 “快” 的节奏裹挟着前进。但当我们静下心来,审视 DeepSeek 的发展、饺子导演创作哪吒…...

DDD - 微服务架构模型_领域驱动设计(DDD)分层架构 vs 整洁架构(洋葱架构) vs 六边形架构(端口-适配器架构)
文章目录 引言1. 概述2. 领域驱动设计(DDD)分层架构模型2.1 DDD的核心概念2.2 DDD架构分层解析 3. 整洁架构:洋葱架构与依赖倒置3.1 整洁架构的核心思想3.2 整洁架构的层次结构 4. 六边形架构:解耦核心业务与外部系统4.1 六边形架…...
第 1 天:UE5 C++ 开发环境搭建,全流程指南
🎯 目标:搭建 Unreal Engine 5(UE5)C 开发环境,配置 Visual Studio 并成功运行 C 代码! 1️⃣ Unreal Engine 5 安装 🔹 下载与安装 Unreal Engine 5 步骤: 注册并安装 Epic Game…...
【华为OD-E卷 - 109 磁盘容量排序 100分(python、java、c++、js、c)】
【华为OD-E卷 - 磁盘容量排序 100分(python、java、c、js、c)】 题目 磁盘的容量单位常用的有M,G,T这三个等级, 它们之间的换算关系为1T 1024G,1G 1024M, 现在给定n块磁盘的容量,…...
【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)
编写Python代码实现词频统计(python+hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 本机PyCharm连接CentOS虚拟机 在阅读本文前,请确保已经阅读过以上三篇文章,成功搭建了…...

5-Scene层级关系
Fiber里有个scene是只读属性,能从fiber中获取它属于哪个场景,scene实体中又声明了fiber,fiber与scene是互相引用的关系。 scene层级关系 举例 在unity.core中的EntityHelper中,可以通过entity获取对应的scene root fiber等属性…...

JVM执行流程与架构(对应不同版本JDK)
直接上图(对应JDK8以及以后的HotSpot) 这里主要区分说明一下 方法区于 字符串常量池 的位置更迭: 方法区 JDK7 以及之前的版本将方法区存放在堆区域中的 永久代空间,堆的大小由虚拟机参数来控制。 JDK8 以及之后的版本将方法…...

本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
🎯 先看看本地部署的运行效果 为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的“鸡兔同笼”问题,考察它的推理能力。 📌 问题示例: 笼子里有鸡和兔,总共有 35 只头,94 只…...

请求响应(接上篇)
请求 日期参数 需要在前面加上一个注解DateTimeFormat来接收传入的参数的值 Json参数 JSON参数:JSON数据键名与形参对象属性名相同,定义POJO类型形参即可接收参数,需要使用 RequestBody 标识 通过RequestBody将JSON格式的数据封装到实体类…...
数组排序算法
数组排序算法 用C语言实现的数组排序算法。 排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度是否稳定适用场景QuickO(n log n)O(n)O(n log n)O(log n)不稳定大规模数据,通用排序BubbleO(n)O(n)O(n)O(1)稳定小规模数据,教学用途InsertO(n)…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...