当前位置: 首页 > news >正文

堆的实现——堆的应用(堆排序)

文章目录

  • 1.堆的实现
  • 2.堆的应用--堆排序

大家在学堆的时候,需要有二叉树的基础知识,大家可以看我的二叉树文章:二叉树

1.堆的实现

如果有⼀个关键码的集合 K = {k0 , k1 , k2 , …,kn−1 } ,把它的所有元素按完全⼆叉树的顺序存储⽅
式存储,在⼀个⼀维数组中,并满⾜: Ki <= K2∗i+1 ( Ki >= K2∗i+1 且 Ki <= K2∗i+2 ),
i = 0、1、2… ,则称为⼩堆(或⼤堆)。将根结点最⼤的堆叫做最⼤堆或⼤根堆,根结点最⼩的堆
叫做最⼩堆或⼩根堆。
如下就是堆的例子:
在这里插入图片描述

堆有很多的应用,例如:①堆排序 ②TOP-K问题

堆的底层就是数组,我们主要实现如下接口:

//堆的初始化
void HeapInit(Heap* php);
// 堆的销毁
void HeapDestory(Heap* php);
// 堆的插入
void HeapPush(Heap* php, HPDataType x);
// 堆的删除
void HeapPop(Heap* php);
// 取堆顶的数据
HPDataType HeapTop(Heap* php);
// 堆的数据个数
int HeapSize(Heap* php);
// 堆的判空
int HeapEmpty(Heap* php);

堆结构:

typedef int HPDataType;typedef struct Heap
{HPDataType* _a;int _size;int _capacity;
}Heap;

对于堆的初始化和销毁很简单:

//堆的初始化
void HeapInit(Heap* php)
{assert(php);php->_a = NULL;php->_size = php->_capacity = 0;
}// 堆的销毁
void HeapDestory(Heap* php)
{assert(php);php->_capacity = php->_size = 0;free(php->_a);php->_a = NULL;
}

对于堆的插入,例如我们建一个小根堆,我们每次插入一个数,是把他放在堆尾的(即数组的最后一个元素),然后使用向上调整算法,

Q:什么是向上调整算法?
A:对于我们新插入来的数,我们把他放在堆的最后一个元素上,我们需要不断比较他(即孩子节点)与父节点谁小,若父节点小,则终止循环,若孩子节点小,则需要他和父节点交换位置,并循环下去比,代码如下:

//向上调整算法,建小堆
void AdjustUp(HPDataType* arr, int n)
{int child = n - 1;while (child > 0){int parent = (child - 1) >> 1;if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);}child = parent;}
}

所以,对于堆插入一个元素代码如下:

// 堆的插入
void HeapPush(Heap* php, HPDataType x)
{assert(php);//判断是否需要增容if (php->_capacity == php->_size){int newCapacity = php->_capacity == 0 ? 4 : 2 * php->_capacity;HPDataType* tmp = (HPDataType*)realloc(php->_a, newCapacity * sizeof(HPDataType));if (tmp == NULL){perror("realloc fail");exit(-1);}php->_capacity = newCapacity;php->_a = tmp;}php->_a[php->_size++] = x;//向上调整算法AdjustUp(php->_a, php->_size);
}

对于堆的删除,也就是我们要把最小的那个元素pop出来,已知的是堆顶是最小的元素,我们只需要让堆顶元素和最后一个元素互换,然后size–,然后在执行向下调整算法即可:如下

//向下调整算法
void AdjustDown(HPDataType* arr, int n)
{int parent = 0;int child = parent * 2 + 1;while (child < n){if (child + 1 < n && arr[child + 1] < arr[child]) child = child + 1;if (arr[child] < arr[parent]){swap(arr[child], arr[parent]);parent = child;child = parent * 2 + 1;}else break;}
}// 堆的删除
void HeapPop(Heap* php)
{assert(php);assert(!HeapEmpty(php));swap(php->_a[0], php->_a[php->_size - 1]);php->_size--;AdjustDown(php->_a, php->_size);
}

余下的接口:

// 取堆顶的数据
HPDataType HeapTop(Heap* php)
{assert(php);assert(!HeapEmpty(php));return php->_a[0];
}// 堆的数据个数
int HeapSize(Heap* php)
{assert(php);return php->_size;
}
// 堆的判空
int HeapEmpty(Heap* php)
{assert(php);return php->_size == 0 ? 1 : 0;
}

2.堆的应用–堆排序

我们想一想,给我们传入一个数组,让我们堆数组里面的元素进行排序,需要注意的是,向上调整算法和向下调整算法我们都要求除了他,其他的都是一个堆。也就是我们需要对每个数据都进行一遍调整算法,那么向上还是向下呢?我们来分析一下时间复杂度:

  1. 向上调整算法:我们需要从第一个元素开始都进行一遍向上调算法,
    在这里插入图片描述
    因此来说:==向上调整算法的时间复杂度是O(nlogn),==为什么这么高,我们可以想一下,月考后面的元素在二叉树上呈现的是越多的,而且他还要向上移动比较的次数更多,那他的复杂度不就高了吗

  2. 向下调整算法:这里,我们不需要从最后一个元素开始向下调整,我们只需要从最后一个非叶子节点开始向下调整算法即可,
    在这里插入图片描述
    因此向下调整算法的时间复杂度为:O(n)

注意:这里是向下调整算法建堆的时间复杂度是O(n),但是单单一个元素向下调整算法是O(logn)的。

因此对于堆排序,我们采用向下调整算法较优。

堆排序,大家可以参考我的这篇文章:堆排序

相关文章:

堆的实现——堆的应用(堆排序)

文章目录 1.堆的实现2.堆的应用--堆排序 大家在学堆的时候&#xff0c;需要有二叉树的基础知识&#xff0c;大家可以看我的二叉树文章&#xff1a;二叉树 1.堆的实现 如果有⼀个关键码的集合 K {k0 , k1 , k2 , …&#xff0c;kn−1 } &#xff0c;把它的所有元素按完全⼆叉树…...

机器学习6-全连接神经网络2

机器学习6-全连接神经网络2-梯度算法改进 梯度下降算法存在的问题动量法与自适应梯度动量法一、动量法的核心思想二、动量法的数学表示三、动量法的作用四、动量法的应用五、示例 自适应梯度与RMSProp 权值初始化随机权值初始化Xavier初始化HE初始化(MSRA) ![在这里插入图片描述…...

基于 SpringBoot 的电影购票系统

基于SpringBoot的电影购票系统是一个集成了现代化Web开发技术的在线电影票务平台。以下是对该系统的详细介绍&#xff1a; 一、系统背景与意义 随着电影行业的快速发展和观众对观影体验的不断追求&#xff0c;电影票务管理面临着越来越多的挑战。传统的票务管理方式存在效率低…...

C++SLT(三)——list

目录 一、list的介绍二、list的使用list的定义方式 三、list的插入和删除push_back和pop_backpush_front和pop_frontinserterase 四、list的迭代器使用五、list的元素获取六、list的大小控制七、list的操作函数sort和reversemergeremoveremove_ifuniqueassignswap 一、list的介…...

C++ Primer 算术运算符

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

数据结构-堆和PriorityQueue

1.堆&#xff08;Heap&#xff09; 1.1堆的概念 堆是一种非常重要的数据结构&#xff0c;通常被实现为一种特殊的完全二叉树 如果有一个关键码的集合K{k0,k1,k2,...,kn-1}&#xff0c;把它所有的元素按照完全二叉树的顺序存储在一个一维数组中&#xff0c;如果满足ki<k2i…...

【玩转 Postman 接口测试与开发2_017】第13章:在 Postman 中实现契约测试(Contract Testing)与 API 接口验证(下)

《API Testing and Development with Postman》最新第二版封面 文章目录 第十三章 契约测试与 API 接口验证8 导入官方契约测试集合9 契约测试集合的详细配置9.1 env-apiKey 的创建与设置9.2 env-workspaceId 的设置9.3 Mock 服务器及 env-server 的配置9.4 API 测试实例的配置…...

R语言 | 使用 ComplexHeatmap 绘制热图,分区并给对角线分区加黑边框

目的&#xff1a;画热图&#xff0c;分区&#xff0c;给对角线分区添加黑色边框 建议直接看0和4。 0. 准备数据 # 安装并加载必要的包 #install.packages("ComplexHeatmap") # 如果尚未安装 library(ComplexHeatmap)# 使用 iris 数据集 #data(iris)# 选择数值列&a…...

React图标库: 使用React Icons实现定制化图标效果

React图标库: 使用React Icons实现定制化图标效果 图标库介绍 是一个专门为React应用设计的图标库&#xff0c;它包含了丰富的图标集合&#xff0c;覆盖了常用的图标类型&#xff0c;如FontAwesome、Material Design等。React Icons可以让开发者在React应用中轻松地添加、定制各…...

Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API

目前国内少有调用ChatGPT、Claude、Gemini等国外大模型API的库。 Python库sider_ai_api 提供了调用这些大模型的一个完整解决方案&#xff0c; 使得开发者能调用 sider.ai 的API&#xff0c;实现大模型的访问。 Sider是谷歌浏览器和Edge的插件&#xff0c;能调用ChatGPT、Clau…...

DeepSeek、哪吒和数据库:厚积薄发的力量

以下有部分来源于AI&#xff0c;毕竟我认为AI还不能替代&#xff0c;他只能是辅助 快速迭代是应用程序不是工程 在这个追求快速迭代、小步快跑的时代&#xff0c;我们似乎总是被 “快” 的节奏裹挟着前进。但当我们静下心来&#xff0c;审视 DeepSeek 的发展、饺子导演创作哪吒…...

DDD - 微服务架构模型_领域驱动设计(DDD)分层架构 vs 整洁架构(洋葱架构) vs 六边形架构(端口-适配器架构)

文章目录 引言1. 概述2. 领域驱动设计&#xff08;DDD&#xff09;分层架构模型2.1 DDD的核心概念2.2 DDD架构分层解析 3. 整洁架构&#xff1a;洋葱架构与依赖倒置3.1 整洁架构的核心思想3.2 整洁架构的层次结构 4. 六边形架构&#xff1a;解耦核心业务与外部系统4.1 六边形架…...

第 1 天:UE5 C++ 开发环境搭建,全流程指南

&#x1f3af; 目标&#xff1a;搭建 Unreal Engine 5&#xff08;UE5&#xff09;C 开发环境&#xff0c;配置 Visual Studio 并成功运行 C 代码&#xff01; 1️⃣ Unreal Engine 5 安装 &#x1f539; 下载与安装 Unreal Engine 5 步骤&#xff1a; 注册并安装 Epic Game…...

【华为OD-E卷 - 109 磁盘容量排序 100分(python、java、c++、js、c)】

【华为OD-E卷 - 磁盘容量排序 100分&#xff08;python、java、c、js、c&#xff09;】 题目 磁盘的容量单位常用的有M&#xff0c;G&#xff0c;T这三个等级&#xff0c; 它们之间的换算关系为1T 1024G&#xff0c;1G 1024M&#xff0c; 现在给定n块磁盘的容量&#xff0c…...

【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)

编写Python代码实现词频统计(python+hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 本机PyCharm连接CentOS虚拟机 在阅读本文前,请确保已经阅读过以上三篇文章,成功搭建了…...

5-Scene层级关系

Fiber里有个scene是只读属性&#xff0c;能从fiber中获取它属于哪个场景&#xff0c;scene实体中又声明了fiber&#xff0c;fiber与scene是互相引用的关系。 scene层级关系 举例 在unity.core中的EntityHelper中&#xff0c;可以通过entity获取对应的scene root fiber等属性…...

JVM执行流程与架构(对应不同版本JDK)

直接上图&#xff08;对应JDK8以及以后的HotSpot&#xff09; 这里主要区分说明一下 方法区于 字符串常量池 的位置更迭&#xff1a; 方法区 JDK7 以及之前的版本将方法区存放在堆区域中的 永久代空间&#xff0c;堆的大小由虚拟机参数来控制。 JDK8 以及之后的版本将方法…...

本地部署 DeepSeek-R1:简单易上手,AI 随时可用!

&#x1f3af; 先看看本地部署的运行效果 为了测试本地部署的 DeepSeek-R1 是否真的够强&#xff0c;我们随便问了一道经典的“鸡兔同笼”问题&#xff0c;考察它的推理能力。 &#x1f4cc; 问题示例&#xff1a; 笼子里有鸡和兔&#xff0c;总共有 35 只头&#xff0c;94 只…...

请求响应(接上篇)

请求 日期参数 需要在前面加上一个注解DateTimeFormat来接收传入的参数的值 Json参数 JSON参数&#xff1a;JSON数据键名与形参对象属性名相同&#xff0c;定义POJO类型形参即可接收参数&#xff0c;需要使用 RequestBody 标识 通过RequestBody将JSON格式的数据封装到实体类…...

数组排序算法

数组排序算法 用C语言实现的数组排序算法。 排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度是否稳定适用场景QuickO(n log n)O(n)O(n log n)O(log n)不稳定大规模数据&#xff0c;通用排序BubbleO(n)O(n)O(n)O(1)稳定小规模数据&#xff0c;教学用途InsertO(n)…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

五子棋测试用例

一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏&#xff0c;有着深厚的文化底蕴。通过将五子棋制作成网页游戏&#xff0c;可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家&#xff0c;都可以通过网页五子棋感受到东方棋类…...