DeepSeek 实现原理探析
DeepSeek 实现原理探析
引言
DeepSeek 是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨 DeepSeek 的实现原理,分析其核心技术及其在实际应用中的表现。
一、DeepSeek 的核心技术
-
自然语言处理(NLP)
- 词嵌入(Word Embedding):DeepSeek 使用如 Word2Vec、GloVe 或 BERT 等先进的词嵌入技术,将文本中的词语转化为高维向量,以便捕捉词语之间的语义关系。
- 语义理解:通过 Transformer 模型(如 BERT、GPT)进行上下文理解,提升对用户查询意图的准确捕捉。
-
信息检索(IR)
- 倒排索引(Inverted Index):DeepSeek 使用倒排索引技术,快速定位包含查询关键词的文档。
- 排序算法(Ranking Algorithm):基于 BM25、TF-IDF 等传统算法,结合深度学习的排序模型(如 RankNet、LambdaMART),对搜索结果进行智能排序。
-
机器学习(ML)
- 用户行为分析:通过分析用户的点击行为、停留时间等数据,训练个性化推荐模型,提升搜索结果的个性化程度。
- 反馈机制:利用用户的反馈数据(如点击、收藏、分享等),不断优化搜索算法和排序模型。
二、DeepSeek 的工作原理
-
查询解析与理解
- 用户输入查询后,DeepSeek 首先进行分词和词性标注,然后通过词嵌入和语义理解模型,解析查询的深层含义。
-
文档检索与筛选
- 使用倒排索引技术,快速检索包含查询关键词的文档。同时,根据查询的语义理解结果,筛选出相关性较高的文档。
-
结果排序与呈现
- 将筛选出的文档输入到排序模型中,综合考虑文档的相关性、用户个性化偏好等因素,生成最终的排序结果,并呈现给用户。
-
用户反馈与模型优化
- 系统记录用户的交互行为,将反馈数据用于模型的持续优化,以提升未来的搜索效果。
三、DeepSeek 的优势与挑战
-
优势
- 精准性:通过深度学习的语义理解技术,能够更准确地捕捉用户的查询意图。
- 个性化:结合用户行为数据,提供个性化的搜索结果。
- 实时性:利用高效的索引和排序算法,快速响应查询请求。
-
挑战
- 数据隐私:在收集和分析用户行为数据时,需严格遵守数据隐私保护法规。
- 模型复杂度:深度学习模型的训练和优化需要大量的计算资源和数据支持。
- 可解释性:深度模型的“黑箱”特性,使得结果的可解释性成为一大挑战。
四、总结与展望
DeepSeek 通过整合 NLP、IR 和 ML 等多领域技术,实现了智能化、个性化的搜索服务。尽管在实际应用中面临诸多挑战,但随着技术的不断进步和数据资源的日益丰富,DeepSeek 有望在未来的智能搜索领域发挥更大的作用。
参考文献
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.
- Burges, C. J. (2010). From RankNet to LambdaRank to LambdaMART: An Overview. Microsoft Research Technical Report, MSR-TR-2010-82.
本文仅对 DeepSeek 的实现原理进行了初步探讨,未来可以进一步深入研究其在具体应用场景中的表现和优化策略。
相关文章:
DeepSeek 实现原理探析
DeepSeek 实现原理探析 引言 DeepSeek 是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索…...
2021 年 9 月青少年软编等考 C 语言五级真题解析
目录 T1. 问题求解思路分析T2. 抓牛思路分析T3. 交易市场思路分析T4. 泳池思路分析T1. 问题求解 给定一个正整数 N N N,求最小的 M M M 满足比 N N N 大且 M M M 与 N N N 的二进制表示中有相同数目的 1 1 1。 举个例子,假如给定 N N N 为 78 78 78,二进制表示为 …...
洛谷网站: P3029 [USACO11NOV] Cow Lineup S 题解
题目传送门: P3029 [USACO11NOV] Cow Lineup S - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 前言: 这道题的核心问题是在一条直线上分布着不同品种的牛,要找出一个连续区间,使得这个区间内包含所有不同品种的牛,…...
编程领域的IO模型(BIO,NIO,AIO)
目前对于市面上绝大多数的应用来说,不能实现的业务功能太少了。更多的是对底层细节,性能优化的追求。其中IO就是性能优化中很重要的一环。Redis快,mysql缓冲区存在的意义。都跟IO有着密切关系。IO其实我们都在用,输入输出流这块。…...
DeepSeek和ChatGPT的对比
最近DeepSeek大放异彩,两者之间有什么差异呢?根据了解到的信息,简单做了一个对比。 DeepSeek 和 ChatGPT 是两种不同的自然语言处理(NLP)模型架构,尽管它们都基于 Transformer 架构,但在设计目标…...
Pyqt 的QTableWidget组件
QTableWidget 是 PyQt6 中的一个表格控件,用于显示和编辑二维表格数据。它继承自 QTableView,提供了更简单的方式来处理表格数据,适合用于需要展示结构化数据的场景。 1. 常用方法 1.1 构造函数 QTableWidget(parent: QWidget None)&#x…...
4. 【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--什么是微服务--微服务设计原则与最佳实践
相比传统的单体应用,微服务架构通过将大型系统拆分成多个独立的小服务,不仅提升了系统的灵活性和扩展性,也带来了许多设计和运维上的挑战。如何在设计和实现微服务的过程中遵循一系列原则和最佳实践,从而构建一个稳定、高效、易维…...
网络安全威胁框架与入侵分析模型概述
引言 “网络安全攻防的本质是人与人之间的对抗,每一次入侵背后都有一个实体(个人或组织)”。这一经典观点概括了网络攻防的深层本质。无论是APT(高级持续性威胁)攻击、零日漏洞利用,还是简单的钓鱼攻击&am…...
树和二叉树_7
树和二叉树_7 一、leetcode-102二、题解1.引库2.代码 一、leetcode-102 二叉树的层序遍历 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 样例输入:root [3,9,20,null,nu…...
不同标签页、iframe或者worker之间的广播通信——BroadcastChannel
BroadcastChannel是一个现代浏览器提供的 API,用于在同一浏览器的不同浏览上下文(如不同的标签页、iframe 或者 worker)之间进行消息传递。它允许你创建一个广播频道,通过该频道可以在不同的浏览上下文之间发送和接收消息。 Broa…...
开源CodeGPT + DeepSeek-R1 是否可以替代商业付费代码辅助工具
开源CodeGPT + DeepSeek-R1 是否可以替代商业付费代码辅助工具 背景与研究目的 在快速发展的软件开发领域,代码辅助工具已成为提高开发效率和质量的关键。然而,商业付费工具如通义灵码和腾讯AI代码助手,尽管功能强大,但其高昂的成本和许可证限制,使得许多企业寻求更具吸…...
AUTOSAR汽车电子嵌入式编程精讲300篇-基于FPGA的CAN FD汽车总线数据交互系统设计
目录 前言 汽车总线以及发展趋势 汽车总线技术 汽车总线发展趋势 CAN FD总线国内外研究现状 2 系统方案及CAN FD协议分析 2.1系统控制方案设计 2.2 CAN FD总线帧结构分析 2.2.1数据帧分析 2.2.2远程帧分析 2.2.3过载帧分析 2.2.4错误帧分析 2.2.5帧间隔分析 2.3位…...
STC51案例操作
案例 1:LED 闪烁 功能描述:通过操作 P1 口寄存器,让连接在 P1.0 引脚的 LED 以一定间隔闪烁。 #include <reg51.h>// 延时函数 void delay(unsigned int time) {unsigned int i, j;for (i 0; i < time; i)for (j 0; j < 123; …...
多光谱技术在华为手机上的应用发展历史
2018 年,华为 P20 系列首次搭载 5 通道色温传感器,可帮助手机在不同光照条件下保持画面色彩一致性。 2020 年,华为 P40 系列搭载 8 通道多光谱色温传感器(实际为 11 通道,当时只用 8 个通道检测可见光)&am…...
C语言:函数栈帧的创建和销毁
目录 1.什么是函数栈帧2.理解函数栈帧能解决什么问题3.函数栈帧的创建和销毁的过程解析3.1 什么是栈3.2 认识相关寄存器和汇编指令3.3 解析函数栈帧的创建和销毁过程3.3.1 准备环境3.3.2 函数的调用堆栈3.3.3 转到反汇编3.3.4 函数栈帧的创建和销毁 1.什么是函数栈帧 在写C语言…...
NLP_[2]_文本预处理-文本数据分析
文章目录 4 文本数据分析1 文件数据分析介绍2 数据集说明3 获取标签数量分布4 获取句子长度分布5 获取正负样本长度散点分布6 获取不同词汇总数统计7 获取训练集高频形容词词云8 小结 4 文本数据分析 学习目标 了解文本数据分析的作用.掌握常用的几种文本数据分析方法. 1 文…...
【工具篇】深度揭秘 Midjourney:开启 AI 图像创作新时代
家人们,今天咱必须好好唠唠 Midjourney 这个在 AI 图像生成领域超火的工具!现在 AI 技术发展得那叫一个快,各种工具层出不穷,Midjourney 绝对是其中的明星产品。不管你是专业的设计师、插画师,还是像咱这种对艺术创作有点小兴趣的小白,Midjourney 都能给你带来超多惊喜,…...
从O(k*n)到O(1):如何用哈希表终结多层if判断的性能困局
【前言】 本文将以哈希表重构实战为核心,完整展示如何将传统条件匹配逻辑(上千层if-else判断)转化为O(1)的哈希表高效实现。通过指纹验证场景的代码级解剖,您将深入理解: 1.哈希函数设计如何规避冲突陷阱 2.链式寻址法的工程实现…...
视频采集卡接口
采集卡的正面有MIC IN、LINE IN以及AUDIO OUT三个接口, MIC IN为麦克风输入,我们如果要给采集到的视频实时配音或者是在直播的时候进行讲解,就可以在这里插入一个麦克风, LINE IN为音频线路输入,可以外接播放背景音乐…...
蓝桥杯真题 - 像素放置 - 题解
题目链接:https://www.lanqiao.cn/problems/3508/learning/ 个人评价:难度 3 星(满星:5) 前置知识:深度优先搜索 整体思路 深搜,在搜索过程中进行剪枝,剪枝有以下限制条件…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
负载均衡器》》LVS、Nginx、HAproxy 区别
虚拟主机 先4,后7...
Linux-进程间的通信
1、IPC: Inter Process Communication(进程间通信): 由于每个进程在操作系统中有独立的地址空间,它们不能像线程那样直接访问彼此的内存,所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
