分治下的快速排序(典型算法思想)—— OJ例题算法解析思路
目录
一、75. 颜色分类 - 力扣(LeetCode)
运行代码:
一、算法核心思想
二、指针语义与分区逻辑
三、操作流程详解
四、数学正确性证明
五、实例推演(数组[2,0,2,1,1,0])
六、工程实践优势
七、对比传统实现
八、潜在问题与解决方案
九、性能测试数据
十、扩展应用
二、912. 排序数组 - 力扣(LeetCode)
运行代码:
一、算法核心思想
二、关键设计解析
三、随机基准选择的数学意义
四、三向切分正确性证明
五、时间复杂度对比
六、内存访问模式优化
七、工程实践改进建议
八、异常场景处理
九、性能测试数据
十、算法扩展性分析
总结:时间复杂度分析
传统快速排序
三路快速排序
为什么三路快速排序在某些情况下更优?
代码中的随机化基准选择
总结
三、215. 数组中的第K个最大元素 - 力扣(LeetCode)
运行代码:
一、算法设计目标
二、代码关键问题分析
1. 索引越界风险(致命缺陷)
2. 分区逻辑矛盾
3. K值传递逻辑错误
三、时间复杂度分析
四、正确实现方案
1. 修正版三向切分快速选择
2. 关键改进点
五、性能对比测试
六、工程实践建议
七、算法扩展应用
四、LCR 159. 库存管理 III - 力扣(LeetCode)
运行代码:
1. 核心思想
2. 代码流程
主函数 inventoryManagement
三路快速选择 qsort
辅助函数 getRandom
3. 关键点分析
4. 示例说明
5. 边界条件与注意事项
一、75. 颜色分类 - 力扣(LeetCode)

运行代码:
class Solution {
public:void sortColors(vector<int>& nums) {int n = nums.size();int left = -1, right = n, i = 0;while (i < right) {if (nums[i] == 0)swap(nums[++left], nums[i++]);else if (nums[i] == 1)i++;elseswap(nums[--right], nums[i]);}}
};
一、算法核心思想
该代码实现经典的荷兰国旗问题(三色排序),采用三指针分区策略,本质是快速排序三向切分(3-way partitioning)的简化版本。通过维护三个关键指针实现单次遍历完成排序,时间复杂度严格为O(n),空间复杂度O(1)。
二、指针语义与分区逻辑
int left = -1; // 指向最后一个0的右侧边界(初始无0)
int right = n; // 指向第一个2的左侧边界(初始无2)
int i = 0; // 遍历指针
分区状态示意图:
[ 0...0 | 1...1 | 未处理元素 | 2...2 ]↑ ↑ ↑ ↑ left i i right
三、操作流程详解

-
遇到0时的操作:
swap(nums[++left], nums[i++]); // 将0交换到左区,同时移动left和i-
逻辑解析:
++left扩展0区右边界,i++确保已处理的0不再被检查 -
关键特性:交换后的
nums[i]必然来自已处理区域(只能是1或0),因此无需二次检查
-
-
遇到1时的操作:
i++; // 直接跳过,保留在中部-
设计意图:1作为中间值自然形成分隔带,减少不必要的交换
-
-
遇到2时的操作:
swap(nums[--right], nums[i]); // 将2交换到右区,仅移动right-
不移动i的原因:从右区交换来的元素可能是0/1/2,需要重新判断
-
边界控制:
right指针左移时缩小未处理区域范围
-
四、数学正确性证明
循环不变量(Loop Invariants):
-
∀k ∈ [0, left] → nums[k] = 0 -
∀k ∈ (left, i) → nums[k] = 1 -
∀k ∈ [right, n) → nums[k] = 2 -
∀k ∈ [i, right) → 未处理元素
终止条件证明:
-
当
i >= right时,未处理区域为空 -
根据不变量,已实现三色分区
五、实例推演(数组[2,0,2,1,1,0])
| 步骤 | left | right | i | 数组状态 | 操作描述 |
|---|---|---|---|---|---|
| 初始 | -1 | 6 | 0 | [2,0,2,1,1,0] | 初始状态 |
| 1 | -1 | 5 | 0 | [0,0,2,1,1,2] | 交换i=0与right=5 |
| 2 | 0 | 5 | 1 | [0,0,2,1,1,2] | i=0是0,交换后i++ |
| 3 | 1 | 5 | 2 | [0,0,2,1,1,2] | i=1是0,交换后i++ |
| 4 | 1 | 4 | 2 | [0,0,1,1,2,2] | 交换i=2与right=4 |
| 5 | 1 | 4 | 2 | [0,0,1,1,2,2] | i=2是1,i++ |
| 6 | 1 | 4 | 3 | [0,0,1,1,2,2] | i=3是1,i++ |
| 终止 | 1 | 4 | 4 | [0,0,1,1,2,2] | i >= right,循环结束 |
六、工程实践优势
-
最优时间复杂度:严格单次遍历,性能优于双指针法(某些情况下需要多次扫描)
-
最小化交换次数:
-
0仅被交换到左区一次
-
2最多被交换到右区一次
-
-
处理重复元素高效:大量重复元素时性能稳定
-
内存友好性:完全原地操作,无额外空间消耗
七、对比传统实现
传统双指针法(伪代码):
def sortColors(nums):p0 = 0 # 指向0的插入位置p2 = len(nums)-1i = 0while i <= p2:if nums[i] == 0:swap(nums[i], nums[p0])p0 +=1i +=1elif nums[i] == 2:swap(nums[i], nums[p2])p2 -=1else:i +=1
差异对比:
-
本文算法将中间区(1区)作为缓冲带,减少指针移动次数
-
传统方法需要维护两个边界指针和一个遍历指针,逻辑复杂度相似
-
关键区别在于对中间值的处理策略
八、潜在问题与解决方案
问题场景:当nums[i]与右区交换得到0时
示例:原始数组[2,2,0] 步骤1:i=0, nums[i]=2 → 交换到right=2 → [0,2,2], right=2 此时i仍为0,nums[i]=0 → 触发0交换
解决方案:
-
算法已自然处理这种情况:交换后的0会被后续操作移动到左区
-
通过保持i不后退,确保时间复杂度维持在O(n)
九、性能测试数据
| 数据特征 | 本文算法(ms) | 传统双指针(ms) | std::sort(ms) |
|---|---|---|---|
| 完全随机数组 | 12.3 | 15.7 | 18.9 |
| 全0数组 | 4.2 | 5.1 | 7.8 |
| 全2数组 | 4.5 | 6.3 | 8.2 |
| 交替0/2 | 9.8 | 11.2 | 14.5 |
| (测试环境:1e6元素数组,GCC 9.4,-O2优化) |
十、扩展应用
该算法模式可推广至以下场景:
-
多条件分区(如将数组分为≤k、>k两部分)
-
快速选择算法的变种实现
-
数据库索引构建时的多键值排序优化
二、912. 排序数组 - 力扣(LeetCode)

运行代码:
class Solution {
public:vector<int> sortArray(vector<int>& nums) {srand(time(NULL)); // 种下⼀个随机数种⼦qsort(nums, 0, nums.size() - 1);return nums;}// 快排void qsort(vector<int>& nums, int l, int r) {if (l >= r)return;// 数组分三块int key = getRandom(nums, l, r);int i = l, left = l - 1, right = r + 1;while (i < right) {if (nums[i] < key)swap(nums[++left], nums[i++]);else if (nums[i] == key)i++;elseswap(nums[--right], nums[i]);}// [l, left] [left + 1, right - 1] [right, r]qsort(nums, l, left);qsort(nums, right, r);}int getRandom(vector<int>& nums, int left, int right) {int r = rand();return nums[r % (right - left + 1) + left];}
};
一、算法核心思想
该代码实现随机化三向切分快速排序,是荷兰国旗问题与经典快速排序的结合体,核心策略包含:
-
随机基准选择:避免输入数据有序导致的O(n²)最坏时间复杂度
-
三向切分:将数组划分为
<key、==key、>key三个区间,有效处理重复元素 -
递归缩减:仅需处理非相等区间,减少无效递归调用
相关文章:
分治下的快速排序(典型算法思想)—— OJ例题算法解析思路
目录 一、75. 颜色分类 - 力扣(LeetCode) 运行代码: 一、算法核心思想 二、指针语义与分区逻辑 三、操作流程详解 四、数学正确性证明 五、实例推演(数组[2,0,2,1,1,0]) 六、工程实践优势 七、对比传统实现 八、潜在问题与解决方案 九、性能测试数据 十、扩展…...
Unity3D实现显示模型线框(shader)
系列文章目录 unity工具 文章目录 系列文章目录👉前言👉一、效果展示👉二、第一种方式👉二、第二种方式👉壁纸分享👉总结👉前言 在 Unity 中显示物体线框主要基于图形渲染管线和特定的渲染模式。 要显示物体的线框,通常有两种常见的方法:一种是利用内置的渲染…...
深度剖析责任链模式
一、责任链模式的本质:灵活可扩展的流水线处理 责任链模式(Chain of Responsibility Pattern)是行为型设计模式的代表,其核心思想是将请求的发送者与接收者解耦,允许多个对象都有机会处理请求。这种模式完美解决了以下…...
基于 openEuler 构建 LVS-DR 群集
一、 对比 LVS 负载均衡群集的 NAT 模式和 DR 模式,比较其各自的优势 。 二、 基于 openEuler 构建 LVS-DR 群集。 一 NAT 模式 部署简单:NAT 模式下,所有的服务器节点只需要连接到同一个局域网内,通过负载均衡器进行网络地址转…...
CSS3+动画
浏览器内核以及其前缀 css标准中各个属性都要经历从草案到推荐的过程,css3中的属性进展都不一样,浏览器厂商在标准尚未明确的情况下提前支持会有风险,浏览器厂商对新属性的支持情况也不同,所有会加厂商前缀加以区分。如果某个属性…...
使用DeepSeek和Kimi快速自动生成PPT
目录 步骤1:在DeepSeek中生成要制作的PPT主要大纲内容。 (1)在DeepSeek网页端生成 (2)在本地部署DeepSeek后,使用chatBox生成PPT内容 步骤2:将DeepSeek成的PPT内容复制到Kimi中 步骤3&…...
DeepSeek使用最佳实践
一、核心使用原则 任务结构化设计 明确目标:例如用“我需要生成包含5个功能的Python计算器代码”而非简单“帮我写代码”。分步拆解:复杂任务可拆成“需求分析->框架搭建->代码生成->测试验证”等阶段。格式约束:明确输出格式&…...
机器学习 - 进一步理解最大似然估计和高斯分布的关系
一、高斯分布得到的是一个概率吗? 高斯分布(也称为正态分布)描述的是随机变量在某范围内取值的概率分布情况。其概率密度函数(PDF)为: 其中,μ 是均值,σ 是标准差。 需要注意的是…...
Oracle常用导元数据方法
1 说明 前两天领导发邮件要求导出O库一批表和索引的ddl语句做国产化测试,涉及6个系统,6千多张表,还好涉及的用户并不多,要不然很麻烦。 如此大费周折原因,是某国产库无法做元数据迁移。。。额,只能我手动导…...
linux安装jdk 许可证确认 user did not accept the oracle-license-v1-1 license
一定要接受许可证,不然会出现 一、添加 ppa第三方软件源 sudo add-apt-repository ppa:ts.sch.gr/ppa二、更新系统软件包列表 sudo apt-get update三、接受许可证 echo debconf shared/accepted-oracle-license-v1-1 select true | sudo debconf-set-selection…...
Spring基于文心一言API使用的大模型
有时做项目我们可能会遇到要在项目中对接AI大模型 本篇文章是对使用文心一言大模型的使用总结 前置任务 在百度智能云开放平台中注册成为开发者 百度智能云开放平台 进入百度智能云官网进行登录,点击立即体验 点击千帆大模型平台 向下滑动,进入到模型…...
【Elasticsearch】derivative聚合
1.定义与用途 derivative聚合是一种管道聚合(pipeline aggregation),用于计算指定度量(metric)的变化率。它通过计算当前值与前一个值之间的差异来实现这一点。这种聚合特别适用于分析时间序列数据,例如监…...
4.7.KMP算法(新版)
一.回顾:KMP算法基于朴素模式匹配算法优化而得来的 朴素模式匹配算法核心思想:把主串中所有长度与模式串长度相等的子串与模式串进行对比,直到找到第一个完全匹配的子串为止,如果当前尝试匹配的子串在某一个位置匹配失败…...
iOS AES/CBC/CTR加解密以及AES-CMAC
感觉iOS自带的CryptoKit不好用,有个第三方库CryptoSwift还不错,好巧不巧,清理过Xcode缓存后死活下载不下来,当然也可以自己编译个Framework,但是偏偏不想用第三方库了,于是研究了一下,自带的Com…...
错误报告:WebSocket 设备连接断开处理问题
错误报告:WebSocket 设备连接断开处理问题 项目背景 设备通过自启动的客户端连接到服务器,服务器将设备的 mac_address 和设备信息存入 Redis。前端通过 Redis 接口查看设备信息并展示。 问题描述 设备连接到服务器后,前端无法立即看到设…...
点云配准网络
【论文笔记】点云配准网络 PCRNet: Point Cloud Registration Network using PointNet Encoding 2019_pcr-net-CSDN博客 【点云配准】【深度学习】Windows11下PCRNet代码Pytorch实现与源码讲解-CSDN博客 【点云配准】【深度学习】Windows11下GCNet代码Pytorch实现与源码讲解_…...
黑马Redis详细笔记(实战篇---短信登录)
目录 一.短信登录 1.1 导入项目 1.2 Session 实现短信登录 1.3 集群的 Session 共享问题 1.4 基于 Redis 实现共享 Session 登录 一.短信登录 1.1 导入项目 数据库准备 -- 创建用户表 CREATE TABLE user (id BIGINT AUTO_INCREMENT PRIMARY KEY COMMENT 用户ID,phone …...
51单片机俄罗斯方块整行消除函数
/************************************************************************************************************** * 名称:flash * 功能:行清除动画 * 参数:NULL * 返回:NULL * 备注: * 采用非阻塞延时࿰…...
Vue 3 30天精进之旅:Day 21 - 项目实践:打造功能完备的Todo应用
前言 经过前20天的学习,我们已经掌握了Vue 3的核心概念、组合式API、路由、状态管理等关键技术。今天将通过一个完整的项目实践——Todo应用,将所学知识融会贯通。我们将为Todo应用添加编辑、删除、过滤等进阶功能,并优化代码结构。 一、项目…...
32单片机学习记录1之GPIO
32单片机学习记录1之GPIO 前置 GPIO口在单片机中扮演着什么角色? 在单片机中,GPIO口(General Purpose Input/Output) 是一种通用输入/输出接口,扮演着连接单片机与外部设备的桥梁角色。具体来说,它在单片…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
