多项式插值(数值计算方法)Matlab实现
多项式插值(数值计算方法)Matlab实现
- 一. 原理介绍
- 二. 程序设计
- 1. 构建矩阵
- 2. 求解矩阵方程
- 3. 作出多项式函数
- 4. 绘制插值曲线
- 5. 完整代码
- 三. 图例
一. 原理介绍
- 关于插值的定义及基本原理可以参照如下索引
插值原理(数值计算方法) - 前面已经介绍过插值原理的唯一性表述,对于分立的数据点,方程组:
P ( x 0 ) = y 0 ⇒ a 0 + a 1 x 0 + a 2 x 0 2 + ⋯ + a n x 0 n = y 0 , P ( x 1 ) = y 1 ⇒ a 0 + a 1 x 1 + a 2 x 1 2 + ⋯ + a n x 1 n = y 1 , ⋮ P ( x n ) = y n ⇒ a 0 + a 1 x n + a 2 x n 2 + ⋯ + a n x n n = y n . \begin{aligned} & P(x_0) = y_0 \quad \Rightarrow \quad a_0 + a_1 x_0 + a_2 x_0^2 + \cdots + a_n x_0^n = y_0, \\ & P(x_1) = y_1 \quad \Rightarrow \quad a_0 + a_1 x_1 + a_2 x_1^2 + \cdots + a_n x_1^n = y_1, \\ & \quad \vdots \\ & P(x_n) = y_n \quad \Rightarrow \quad a_0 + a_1 x_n + a_2 x_n^2 + \cdots + a_n x_n^n = y_n. \end{aligned} P(x0)=y0⇒a0+a1x0+a2x02+⋯+anx0n=y0,P(x1)=y1⇒a0+a1x1+a2x12+⋯+anx1n=y1,⋮P(xn)=yn⇒a0+a1xn+a2xn2+⋯+anxnn=yn.
恒有解,多项式插值的目标即为在这一过程中求解系数 a 0 、 a 1 、 . . . 、 a n ⟺ [ a 0 a 1 a 2 ⋮ a n ] a_0、a_1、...、a_n\Longleftrightarrow\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} a0、a1、...、an⟺ a0a1a2⋮an
- 即解方程组:
[ 1 x 0 x 0 2 ⋯ x 0 n 1 x 1 x 1 2 ⋯ x 1 n ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n x n 2 ⋯ x n n ] [ a 0 a 1 a 2 ⋮ a n ] = [ y 0 y 1 y 2 ⋮ y n ] . \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}= \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}. 11⋮1x0x1⋮xnx02x12⋮xn2⋯⋯⋱⋯x0nx1n⋮xnn a0a1a2⋮an = y0y1y2⋮yn .
关于该方程组的解法在线性代数中有多种,这里主要提及两种:
①高斯消元法
②克莱姆法则
程序设计过程中一般有封装好的库函数,如果为了考虑减少库依赖和提高程序运行效率及占用可能会用到上述方法(这里就不详细展开了)
二. 程序设计
1. 构建矩阵
% 构造Vandermonde矩阵A
A = zeros(n, n);
for i = 1:nfor j = 1:nA(i, j) = x_data(i)^(j-1); % Vandermonde矩阵end
end
Ⅰ 构建一个 ( n × n ) (n \times n) (n×n)的矩阵 A 来描述多项式矩阵:
[ 1 x 0 x 0 2 ⋯ x 0 n 1 x 1 x 1 2 ⋯ x 1 n ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n x n 2 ⋯ x n n ] \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} 11⋮1x0x1⋮xnx02x12⋮xn2⋯⋯⋱⋯x0nx1n⋮xnn
其中:
A [ i ] [ j ] = x i j − 1 A[i][j] = x_{i}^{j-1} A[i][j]=xij−1
式中第一列的1是通过 x i 0 x_{i}^{0} xi0得到的。
y_data = data(:, 2);
Ⅱ 构建系数矩阵 B,即原始数据对应的 y 值:
2. 求解矩阵方程
% 解线性方程组 A * coefficients = y_data
coefficients = A \ y_data;
注释:该部分通过反斜杠运算符
\计算线性方程组 A ⋅ c o e f f i c i e n t s = y d a t a A ⋅ coefficients = y_data A⋅coefficients=ydata的解。
①当方程组超定时(方程数大于未知数个数),返回最小二乘解,即最小化残差平方和 ∥ A ⋅ c o e f f i c i e n t s − y d a t a ∥ 2 ∥ A ⋅ coefficients − y_{data} ∥^2 ∥A⋅coefficients−ydata∥2 ;
②当方程组适定时,返回精确解;
③当方程组欠定时返回最小范数解。
求解出矩阵形式形如
6.0000
-7.8333
4.5000
-0.6667
从上至下为最低次项到最高次项系数
3. 作出多项式函数
% 生成插值多项式的x和y值
x_vals = linspace(min(x_data) - 1, max(x_data) + 1, 500);
y_vals = polyval(flip(coefficients), x_vals); % 计算插值多项式的y值
注释: 前面注释提到
coefficients数组中的系数对应从左到右为最低到最高次项系数,而函数polyval()要求输入具有逆序的项系数:flip函数将系数的顺序反转,将变为从最高次到最低次项系数
y_vals = polyval(flip(coefficients), x_vals)将计算每一个x_val对应的多项式值,并返回一个y_vals数组,包含每个x_val对应的y值。
4. 绘制插值曲线
% 绘制插值曲线
figure;
plot(x_vals, y_vals, 'b-', 'DisplayName', '插值曲线');
hold on;
scatter(x_data, y_data, 'ro', 'DisplayName', '数据点');
title('插值多项式');
xlabel('X轴');
ylabel('Y轴');
legend;
grid on;
5. 完整代码
% 输入数据 (x, y)
data = [1,22,33,54,4
];% 提取x和y值
x_data = data(:, 1);
y_data = data(:, 2);
n = length(data);% 构造Vandermonde矩阵A
A = zeros(n, n);
for i = 1:nfor j = 1:nA(i, j) = x_data(i)^(j-1); % Vandermonde矩阵end
end% 解线性方程组 A * coefficients = y_data
coefficients = A \ y_data;% 输出插值多项式的系数
disp('插值多项式的系数:');
disp(coefficients);% 生成插值多项式的x和y值
x_vals = linspace(min(x_data) - 1, max(x_data) + 1, 500);
y_vals = polyval(flip(coefficients), x_vals); % 计算插值多项式的y值% 绘制插值曲线
figure;
plot(x_vals, y_vals, 'b-', 'DisplayName', '插值曲线');
hold on;
scatter(x_data, y_data, 'ro', 'DisplayName', '数据点');
title('插值多项式');
xlabel('X轴');
ylabel('Y轴');
legend;
grid on;
三. 图例
这要求我们的输入数据都具有上述形式:
data = [x_1, y_1x_2, y_2x_3, y_3x_4, y_4...]
最后我们插值一组随机生成的测试数据
data = [7.264384, 3.9312921.943873, 6.2189038.384019, 2.5841035.672210, 9.0326740.294315, 4.7260186.129531, 7.9128469.516347, 1.4782643.824679, 5.596042
]
实际应用时应避免数据点过多导致的多项式次数过高
希望能够帮到迷途之中的你,知识有限,如有学术错误请及时指正,感谢大家的阅读
(^^)/▽ ▽\(^^)
相关文章:
多项式插值(数值计算方法)Matlab实现
多项式插值(数值计算方法)Matlab实现 一. 原理介绍二. 程序设计1. 构建矩阵2. 求解矩阵方程3. 作出多项式函数4. 绘制插值曲线5. 完整代码 三. 图例 一. 原理介绍 关于插值的定义及基本原理可以参照如下索引 插值原理(数值计算方法ÿ…...
[AI]Mac本地部署Deepseek R1模型 — — 保姆级教程
[AI]Mac本地部署DeepSeek R1模型 — — 保姆级教程 DeepSeek R1是中国AI初创公司深度求索(DeepSeek)推出大模型DeepSeek-R1。 作为一款开源模型,R1在数学、代码、自然语言推理等任务上的性能能够比肩OpenAI o1模型正式版,并采用MI…...
android手机本地部署deepseek1.5B
手机本地部署大模型需要一个开源软件 Release Release v1.6.7 a-ghorbani/pocketpal-ai GitHub 下载release版本apk 它也支持ios,并且是开源的,你可以编译修改它 安装完后是这样的 可以下载推荐的模型,也可以在pc上下载好,然后copy到手机里 点 + 号加载本地模型...
理解UML中的四种关系:依赖、关联、泛化和实现
在软件工程中,统一建模语言(UML)是一种广泛使用的工具,用于可视化、设计、构造和文档化软件系统。UML提供了多种图表类型,如类图、用例图、序列图等,帮助开发者和设计师更好地理解系统的结构和行为。在UML中…...
机器学习 - 词袋模型(Bag of Words)实现文本情感分类的详细示例
为了简单直观的理解模型训练,我这里搜集了两个简单的实现文本情感分类的例子,第一个例子基于朴素贝叶斯分类器,第二个例子基于逻辑回归,通过这两个例子,掌握词袋模型(Bag of Words)实现文本情感…...
Kimi k1.5: Scaling Reinforcement Learning with LLMs
TL;DR 2025 年 kimi 发表的 k1.5 模型技术报告,和 DeepSeek R1 同一天发布,虽然精度上和 R1 有微小差距,但是文章提出的 RL 路线也有很强的参考意义 Paper name Kimi k1.5: Scaling Reinforcement Learning with LLMs Paper Reading Note…...
如何评估云原生GenAI应用开发中的安全风险(下)
以上就是如何评估云原生GenAI应用开发中的安全风险系列中的上篇内容,在本篇中我们介绍了在云原生AI应用开发中不同层级的风险,并了解了如何定义AI系统的风险。在本系列下篇中我们会继续探索我们为我们的云原生AI应用评估风险的背景和意义,并且…...
ASP.NET Core程序的部署
发布 不能直接把bin/Debug部署到生产环境的服务器上,性能低。应该创建网站的发布版,用【发布】功能。两种部署模式:“框架依赖”和“独立”。独立模式选择目标操作系统和CPU类型。Windows、Linux、iOS;关于龙芯。 网站的运行 在…...
《深度LSTM vs 普通LSTM:训练与效果的深度剖析》
在深度学习领域,长短期记忆网络(LSTM)以其出色的处理序列数据能力而备受瞩目。而深度LSTM作为LSTM的扩展形式,与普通LSTM在训练和效果上存在着一些显著的不同。 训练方面 参数数量与计算量:普通LSTM通常只有一层或较少…...
Spring依赖注入方式
写在前面:大家好!我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。我的唯一博客更新地址是:https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油,冲鸭&#x…...
Photoshop自定义键盘快捷键
编辑 - 键盘快捷键 CtrlShiftAltK 把画笔工具改成Q , 橡皮擦改成W , 涂抹工具改成E , 增加和减小画笔大小A和S 偏好设置 - 透明度和色域 设置一样颜色 套索工具 可以自定义套选一片区域 Shiftf5 填充 CtrlU 可以改颜色/色相/饱和度 CtrlE 合并图层 CtrlShiftS 另存…...
解决VsCode的 Vetur 插件has no default export Vetur问题
文章目录 前言1.问题2. 原因3. 解决其他 前言 提示: 1.问题 Cannot find module ‘ant-design-vue’. Did you mean to set the ‘moduleResolution’ option to ‘node’, or to add aliases to the ‘paths’ option? Module ‘“/xxx/xxx/xxx/xxx/xxx/src/vie…...
关于浏览器缓存的思考
问题情境 开发中要实现一个非原生pdf预览功能,pdf链接放在一个固定的后台地址,当重新上传pdf后,预览pdf仍然是上一次的pdf内容,没有更新为最新的内容。 查看接口返回状态码为 200 OK(from disk cache), 表示此次pdf返回…...
Vue3+element-plus表单重置resetFields方法失效问题
遇到的其中一种情况: bug:在当前页面直接筛选重置,重置方法生效;但先筛选,再切换别的页面,再切回原页面重置,重置无效(keep-alive的页面无此bug) 原因: 1.Vue…...
解释和对比“application/octet-stream“与“application/x-protobuf“
介绍 在现代 Web 和分布式系统的开发中,数据的传输和交换格式扮演着关键角色。为了确保数据在不同系统之间的传输过程中保持一致性,MIME 类型(Multipurpose Internet Mail Extensions)被广泛应用于描述数据的格式和内容类型。在 …...
1158:求1+2+3+...
【题目描述】 用递归的方法求123……N123……N的值。 【输入】 输入N。 【输出】 输出和。 【输入样例】 5 【输出样例】 15 【解题思路】 递归 递归问题:求12…k的和递归关系:如果想求12…k的和,需要先求12…k-1的和,再加上…...
前端实现在PDF上添加标注(1)
前段时间接到一个需求,用户希望网页上预览PDF,同时能在PDF上添加文字,划线,箭头和用矩形框选的标注,另外还需要对已有的标注进行修改,删除。 期初在互联网上一通搜索,对这个需求来讲发现了两个问…...
螺旋矩阵 II
螺旋矩阵 II 一、题目描述 给定一个正整数 n,请你生成一个包含 1 到 n^2 所有元素的 n x n 正方形矩阵,元素顺序按顺时针的方式进行螺旋排列。 示例 1:输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2:…...
【愚公系列】《Python网络爬虫从入门到精通》001-初识网络爬虫
标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…...
【linux学习指南】模拟线程封装与智能指针shared_ptr
文章目录 📝线程封装🌉 Thread.hpp🌉 Makefile 🌠线程封装第一版🌉 Makefile:🌉Main.cc🌉 Thread.hpp: 🌠线程封装第二版🌉 Thread.hpp:🌉 Main.cc …...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
