当前位置: 首页 > news >正文

LSTM 学习笔记 之pytorch调包每个参数的解释

0、 LSTM 原理

整理优秀的文章
LSTM入门例子:根据前9年的数据预测后3年的客流(PyTorch实现)
[干货]深入浅出LSTM及其Python代码实现
整理视频
李毅宏手撕LSTM
[双语字幕]吴恩达深度学习deeplearning.ai

1 Pytorch 代码

这里直接调用了nn.lstm

 self.lstm = nn.LSTM(input_size, hidden_size, num_layers)  # utilize the LSTM model in torch.nn

下面作为初学者解释一下里面的3个参数
input_size: 这个就是输入的向量的长度or 维度,如一个单词可能占用20个维度。
hidden_size: 这个是隐藏层,其实我感觉有点全连接的意思,这个层的维度影响LSTM 网络输入的维度,换句话说,LSTM接收的数据维度不是输入什么维度就是什么维度,而是经过了隐藏层,做了一个维度的转化。
num_layers: 这里就是说堆叠了几个LSMT 结构。

2 网络定义

class LstmRNN(nn.Module):"""Parameters:- input_size: feature size- hidden_size: number of hidden units- output_size: number of output- num_layers: layers of LSTM to stack"""def __init__(self, input_size, hidden_size=1, output_size=1, num_layers=1):super().__init__()self.lstm = nn.LSTM(input_size, hidden_size, num_layers)  # utilize the LSTM model in torch.nnself.forwardCalculation = nn.Linear(hidden_size, output_size)def forward(self, _x):x, _ = self.lstm(_x)  # _x is input, size (seq_len, batch, input_size)s, b, h = x.shape  # x is output, size (seq_len, batch, hidden_size)x = x.view(s * b, h)x = self.forwardCalculation(x)x = x.view(s, b, -1)return x

3 网络初始化

我们定义一个网络导出onnx ,观察 网络的具体结构

INPUT_FEATURES_NUM = 100
OUTPUT_FEATURES_NUM = 13
lstm_model = LstmRNN(INPUT_FEATURES_NUM, 16, output_size=OUTPUT_FEATURES_NUM, num_layers=2)  # 16 hidden units
print(lstm_model)
save_onnx_path= "weights/lstm_16.onnx"
input_data = torch.randn(1,150,100)input_names = ["images"] + ["called_%d" % i for i in range(2)]
output_names = ["prob"]
torch.onnx.export(lstm_model,input_data,save_onnx_path,verbose=True,input_names=input_names,output_names=output_names,opset_version=12)

在这里插入图片描述
可以看到 LSTM W 是1x64x100;这个序列150没有了 是不是说150序列是一次一次的送的呢,所以在网络中没有体现;16是hidden,LSTM里面的W是64,这里存在一个4倍的关系。
我想这个关系和LSTM的3个门(输入+输出+遗忘+C^)有联系。
在这里插入图片描述
在这里插入图片描述
这里输出我们设置的13,如图 onnx 网络结构可视化显示也是13,至于这个150,或许就是输入有150个词,输出也是150个词吧。

在这里插入图片描述
至于LSTM的层数设置为2,则表示有2个LSTM堆叠。
在这里插入图片描述

4 网络提取

另外提取 网络方便看 每一层的维度,代码如下。

import onnx
from onnx import helper, checker
from onnx import TensorProto
import re
import argparse
model = "./weights/lstm_16.onnx"
output_model_path = "./weights/lstm_16_e.onnx"onnx_model = onnx.load(model)
#Flatten
onnx.utils.extract_model(model, output_model_path, ['images'],['prob'])

相关文章:

LSTM 学习笔记 之pytorch调包每个参数的解释

0、 LSTM 原理 整理优秀的文章 LSTM入门例子:根据前9年的数据预测后3年的客流(PyTorch实现) [干货]深入浅出LSTM及其Python代码实现 整理视频 李毅宏手撕LSTM [双语字幕]吴恩达深度学习deeplearning.ai 1 Pytorch 代码 这里直接调用了nn.l…...

ASUS/华硕飞行堡垒9 FX506H FX706H 原厂Win10系统 工厂文件 带ASUS Recovery恢复

华硕工厂文件恢复系统 ,安装结束后带隐藏分区,带一键恢复,以及机器所有的驱动和软件。 支持型号:FX506HC, FX506HE, FX506HM, FX706HC, FX706HE, FX706HM, FX506HHR, FX706HMB, FX706HEB, FX706HCB, FX506HMB, FX506HEB, FX506HC…...

Unity使用iTextSharp导出PDF-04图形

坐标系 pdf文档页面的原点(0,0)在左下角,向上为y,向右为x。 文档的PageSize可获取页面的宽高数值 单位:像素 绘制矢量图形 使用PdfContentByte类进行绘制,注意文档打开后才有此对象的实例。 绘制方法 …...

JDBC如何连接数据库

首先,我们要去下载JDBC的驱动程序 官网下载地址:https://downloads.mysql.com/archives/c-j/ 选择最新版本就可以 然后回到我们idea点击file - project Structure - Modules, 就行了 参考1:如何解决JDBC连接数据库出现问题且对进行数据库操…...

Unity URP的2D光照简介

官网工程,包括2d光照,动画,动效介绍: https://unity.com/cn/blog/games/happy-harvest-demo-latest-2d-techniques https://docs.unity3d.com/6000.0/Documentation/Manual/urp/Lights-2D-intro.html 人物脸部光照细节和脚上的阴影…...

【IC】AI处理器核心--第二部分 用于处理 DNN 的硬件设计

第 II 部分 用于处理 DNN 的硬件设计 第 3 章 关键指标和设计目标 在过去的几年里,对 DNN 的高效处理进行了大量研究。因此,讨论在比较和评估不同设计和拟议技术的优缺点时应考虑的关键指标非常重要,这些指标应纳入设计考虑中。虽然效率通常…...

从 0 开始本地部署 DeepSeek:详细步骤 + 避坑指南 + 构建可视化(安装在D盘)

个人主页:chian-ocean 前言: 随着人工智能技术的迅速发展,大语言模型在各个行业中得到了广泛应用。DeepSeek 作为一个新兴的 AI 公司,凭借其高效的 AI 模型和开源的优势,吸引了越来越多的开发者和企业关注。为了更好地…...

如何本地部署DeepSeek集成Word办公软件

目录 本地部署DeepSeek安装Ollama下载并部署DeepSeek模型安装ChatBox客户端(可选) 将DeepSeek集成到Word修改Word中的VBA代码执行操作 ✍️相关问答如何在Word中安装和使用VBA宏DeepSeek模型有哪些常见的API接口?如何优化DeepSeek在Word中的集…...

Centos10 Stream 基础配置

NetworkManger 安装 dnf install NetworkManager 查看网络配置 nmcli [rootCentos-S-10 /]# nmcli ens33:已连接 到 ens33"Intel 82545EM"ethernet (e1000), 00:0C:29:08:3E:71, 硬件, mtu 1500ip4 默认inet4 192.168.31.70/24route4 default …...

时间序列分析(三)——白噪声检验

此前篇章: 时间序列分析(一)——基础概念篇 时间序列分析(二)——平稳性检验 一、相关知识点 白噪声的定义:白噪声序列是一种在统计学和信号处理中常见的随机过程,由一系列相互独立、具有相同…...

ThinkPHP8视图赋值与渲染

【图书介绍】《ThinkPHP 8高效构建Web应用》-CSDN博客 《2025新书 ThinkPHP 8高效构建Web应用 编程与应用开发丛书 夏磊 清华大学出版社教材书籍 9787302678236 ThinkPHP 8高效构建Web应用》【摘要 书评 试读】- 京东图书 在控制器操作中,使用view函数可以传入视图…...

对贵司需求的PLC触摸的远程调试的解决方案

远程监控技术解决方案 一、需求痛点分析 全球设备运维响应滞后(平均故障处理周期>72小时)客户定制化需求频繁(每月PLC程序修改需求超50次)人力成本高企(单次跨国差旅成本约$5000)多品牌PLC兼容需求&am…...

2.12寒假作业

web:[HDCTF 2023]Welcome To HDCTF 2023 可以直接玩出来 但是这边还是看一下怎么解吧,看一下js代码,在js.game里面找到一个类似brainfuck加密的字符串 解密可以得到答案,但是后面我又去了解了一下let函数let命令、let命令 let命…...

记使用AScript自动化操作ios苹果手机

公司业务需要自动化操作手机,本来以为很困难,没想到使用AScript工具出乎意料的简单,但是还有很多坑存在,写个博客记录一下。 工具信息: 手机:iphone7 系统版本:ios15 AScript官方文档链接&a…...

【Apache Paimon】-- 16 -- 利用 paimon-flink-action 同步 kafka 数据到 hive paimon 表中

目录 引言CDC 技术概述 2.1 什么是 CDC2.2 CDC 的应用场景Kafka 作为 CDC 数据源的原理与优势 3.1 Kafka 的基本架构3.2 Kafka 在 CDC 中的角色...

基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试

基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试 1. 引言 在计算机视觉领域,图像分类是一个经典的任务。本文将详细介绍如何使用 PyTorch 实现一个树叶分类任务。我们将从数据准备开始,逐步构建模型、训练模型,并在测试…...

算法之 数论

文章目录 质数判断质数3115.质数的最大距离 质数筛选204.计数质数2761.和等于目标值的质数对 2521.数组乘积中的不同质因数数目 质数 质数的定义:除了本身和1,不能被其他小于它的数整除,最小的质数是 2 求解质数的几种方法 法1,根…...

Java 大视界 -- 人工智能驱动下 Java 大数据的技术革新与应用突破(83)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...

【04】RUST特性

文章目录 隐藏shadowing所有权ownership堆区&栈区所有权规则变量&数据Copy Trait与Drop TraitCopy TraitDrop Trait移动克隆函数参数与返回值的所有权参数引用可变引用悬垂引用slice生命周期隐藏shadowing 有点像同名覆盖 let mut guess = String::new();let guess: u3…...

PlantUml常用语法

PlantUml常用语法,将从类图、流程图和序列图这三种最常用的图表类型开始。 类图 基础语法 在 PlantUML 中创建类图时,你可以定义类(Class)、接口(Interface)以及它们之间的关系,如继承&#…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

条件运算符

C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...