当前位置: 首页 > news >正文

Redis7——基础篇(六)

 前言:此篇文章系本人学习过程中记录下来的笔记,里面难免会有不少欠缺的地方,诚心期待大家多多给予指教。

基础篇:

  1. Redis(一)
  2. Redis(二)
  3. Redis(三)
  4. Redis(四)
  5. Redis(五)

接上期内容:上期完成了Redis主从模式的学习。下面开始学习Redis的哨兵模式(重点),话不多说,直接发车。


一、定义

Q:既然已经有了主从模式,为什么还要推出哨兵模式呢?

A:在主从模式的架构里,当 Master 节点发生宕机故障时,从节点并不会自动晋升为新的Master。要是 Master 节点在短时间内无法恢复正常运行,系统就会陷入一个棘手的状况。此时,系统仅仅保留了读操作的功能,却丧失了写操作的能力。这种读写能力的失衡,显然无法满足实际业务对系统高可用性和数据完整性的要求。

而哨兵模式正是为了解决上述主从模式的痛点而诞生。它通过一组Sentinel节点来监控主从架构中的Redis实例,当主节点出现故障时,自动将一个从节点晋升为主节点,并让其他从节点重新指向新的主节点,从而实现自动故障转移,保证系统的高可用性。俗称:无人值守运维。


二、功能

  1. 主从监控:哨兵节点不断地检查主节点和从节点是否正常运行,通过定期发送 PING 命令来判断节点的健康状态。
  2. 消息通知:当某个 Redis 实例出现问题时,哨兵可以通过 API 向管理员或其他应用程序发送通知,以便及时处理。
  3. 自动故障转移:这是哨兵模式的核心功能。当主节点不可用时,哨兵会在从节点中选举一个新的主节点,并调整其他从节点的配置,使其指向新的主节点。
  4. 配置中心:客户端可以通过连接哨兵来获取主节点信息。

三、实操

(一)、架构说明

3个哨兵,1个Master,2个Slave。哨兵自动监控和维护集群,不存放数据,只是吹哨人,Master负责存,Slave负责读。

由于机器硬件问题,同时启动6台虚拟机,电脑吃不消,所以将哨兵的集群放在6379上。

(二)、实操步骤

1、拷贝原生配置

拷贝redis压缩目录下的sentinel.conf到/myredis下。


2、修改参数配置

2.1、参数说明

常用参数:

bind:服务监听地址,用于客户端连接,默认本机

daemonize:是否以后台daemon方式运行

protected-mode:安全保护模式
port:端口
logfile:日志文件路径
pidfilepid:文件路径
dir:工作目录

sentinel monitor <master-name> <ip> <redis-port> <quorum>:设置要监控的master服务器,quorum代表确认客观下线的最少的哨兵数量

sentinel auth-pass <master-name> <password>:连接Master的密码

其他参数:

sentinel down-after-milliseconds <master-name> <milliseconds>:指定多少毫秒之后,主节点没有应答哨兵,此时哨兵主观上认为主节点下线


sentinel parallel-syncs <master-name> <nums>:表示允许并行同步的slave个数,当Master挂了后,哨兵会选出新的Master,此时,剩余的slave会向新的master发起同步数据


sentinel failover-timeout <master-name> <milliseconds>:故障转移的超时时间,进行故障转移时,如果超过设置的毫秒,表示故障转移失败


sentinel notification-script <master-name> <script-path> :配置当某一事件发生时所需要执行的脚本


sentinel client-reconfig-script <master-name> <script-path>:客户端重新配置主节点参数脚本


2.2、修改配置

由于sentinel集群是在6379上,所以需要配置3份sentinel.conf文件。

vim 打开sentinel26379.conf 文件,删除里面所有内容,拷贝下面内容(改为自己虚拟机的IP地址):

bind 0.0.0.0
daemonize yes
protected-mode no
port 26379
logfile /myredis/logs/sentinel26379.log"
pidfile /var/run/redis-sentinel26379.pid
dir /myredis
sentinel monitor mymaster 192.168.112.129 6379 2
sentinel auth-pass mymaster root

23680、23681也一样,但是只要改端口号即可(改为自己虚拟机的IP地址):


3、测试主从模式

如果不知道,主从模式怎么搭建,请前往Redis(五)

启动Master,两台slave,并查看主从关系。

Master:

启动80、81slave:

确定主从关系:

测试主从是否正常工作:


4、配置哨兵集群

在6379那台机器上启动sentinel集群。

哨兵集群已成功启动。


5、模拟故障场景

我们自己手动关闭6379服务器,模拟master挂了。

5.1、思考问题

Q1:Master主机挂了,两台从机是否正常?

A:从机数据正常。


Q2:是否从两台slave中选出新的Master?

A:会。如Q1所示,6380和6381在Master宕机后,哨兵会进行选举和故障转移,导致从机在获取数据时,出现Server closed或者broken pipe错误,但是会立马恢复了。

此时6380已经成为了new Master,6381也变成了6380的slave。


Q3:之前的Master恢复后,谁会是新的Master?双Master会不会冲突?

A:新Master当然是哨兵选举出来的(本次是6380,下次不知道是谁),不会出现双Master的场景,以前的Master重新恢复后,会变成new Master的slave。

启动6379,查看主从关系:

查看Master6380:

完美收官。


6、对比配置文件

后续又重新玩了一遍,所以新Master由6380变成了6381。

查看sentinel26379.conf文件。

老Master6379.conf:

new Master 6381.conf:

结论:文件的内容,在运行期间会被sentinel动态进行更改。

当Master宕机后,哨兵选举出new Master之后,sentinel会对oldMaster_redis.conf、slave_redis.conf、sentinel.conf文件的内容进行更改,即oldMaster_redis.conf中会多一行slaveof的配置,newMaster_redis.conf中会移除之前的配置,而三个sentinel.conf的监控目标也会随之调换。


四、哨兵模式运行流程和选举流程

(一)、主观下线

所谓主观下线(Subjectively Down, 简称 SDOWN)指的是单个Sentinel实例对服务器做出的下线判断,即单个sentinel认为某个服务下线(有可能是接收不到订阅,或者二者之间的网络不通等等原因)。主观下线就是说如果服务器在[sentinel down-after-milliseconds]给定的毫秒数之内没有回应PING命令或者返回一个错误消息, 那么这个Sentinel会主观的(单方面的)认为这个master不可以用了。

sentinel.conf文件中:

sentinel down-after-milliseconds <master-name> <milliseconds>

表示Master被当前sentinel实例认定为失效的间隔时间,这个配置其实就是进行主观下线的一个依据,Master在多长时间内一直没有给sentinel返回有效信息,则认定该Master主观下线。也就是说如果多久没联系上redis-servevr,认为这个redis-server进入到失效(SDOWN)状态。


(二)、客观下线

当一个Sentinel节点将主节点标记为 “主观下线” 后,它会通过Sentinel之间的gossip协议(流言协议)将这个信息传播给其他 Sentinel 节点。当有足够数量(quorum)的Sentinel节点都认为主节点处于 “主观下线” 状态时,这个主节点就会被标记为 “客观下线”(Objectively Down)。

quorum这个参数是进行客观下线的一个依据

意思是至少有quorum个sentinel认为这个master有故障才会对这个master进行下线以及故障转移。因为有的时候,某个sentinel节点可能因为自身网络原因导致无法连接master,而此时master并没有出现故障,所以这就需要多个sentinel都一致认为该master有问题,才可以进行下一步操作,这就保证了公平性和高可用。 

sentinel.conf文件中:


(三)、选举leader

当主节点被判断客观下线以后,各个哨兵节点会进行协商,先选举出一个领导者哨兵节点(兵王)也即被选举出的兵王进行failover(故障迁移)。

Q:领导者哨兵节点如何选举出来的?

A:监视该主节点的所有哨兵都有可能被选为领导者,选举使用的算法是Raft算法;Raft算法的基本思路是先到先得,即在一轮选举中,哨兵A向B发送成为领导者的申请,如果B没有同意过其他哨兵,则会同意A成为领导者。这里涉及到一个算法问题,不做过多阐述,有兴趣可以私底下学习。


(四)、故障转移

故障转移分为三个步骤。可以趣称为“新主登基”、“群臣俯首”、“旧主拜服”。

(一)、“新主登基”

新主登基指:某个slave节点被选为Master。

从slave节点中选出new Master的规则:优先级-->偏移量-->Run ID

1、优先级

redis.conf文件中,优先级slave-priority或者replica-priority最高的从节点(数字越小优先级越高 ),默认100。


2、偏移量

指复制偏移位置offset最大的从节点,通俗一点就是谁从原Master哪儿复制的key多,谁就当新的Master。


3、Run ID

Run ID是Redis 实例启动时生成的一个随机的 40 位十六进制字符串,全局唯一。哨兵会选择 Run ID字典序最小的从节点作为新的主节点


4、选举流程图


(二)、“群臣俯首”

群臣俯首指:当new Master选举出来后,剩余的slave节点脱离宕机的Master,重新连接的新的Master(可以从sentinel.log文件查看)。具体分为二步:

1、Sentinel leader会对选举出的new Master执行slaveof no one操作,将其提升为Master节点。

2、Sentinel leader向其它slave发送命令,让剩余的slave成为新的Master节点的slave。


(三)、“旧主拜服”

旧主拜服指:已经宕机的Master故障恢复,重启成功了,从新加入。但是身份由以前的Master变成slave。


(四)、故障转移小总结

上述的failover操作均由sentinel自己独自完成,完全无需人工干预。


五、使用注意事项

  1. 哨兵节点的数量应为多个,哨兵本身应该集群,保证高可用。
  2. 哨兵节点的数量应该是奇数。
  3. 各个哨兵节点的配置应一致。
  4. 如果哨兵节点部署在Docker等容器里面,尤其要注意端口的正确映射。
  5. 哨兵集群+主从复制,并不能保证数据零丢失。

六、总结

Redis哨兵模式通过监控、通知和自动故障转移机制,为 Redis集群提供了高可用性保障。合理配置和应用 Redis哨兵模式,可以有效地提升系统的稳定性和性能。在实际应用中,需要根据具体的业务需求和场景,灵活调整配置参数,以充分发挥 Redis 哨兵模式的优势。


ps:努力到底,让持续学习成为贯穿一生的坚守。学习笔记持续更新中。。。。

相关文章:

Redis7——基础篇(六)

前言&#xff1a;此篇文章系本人学习过程中记录下来的笔记&#xff0c;里面难免会有不少欠缺的地方&#xff0c;诚心期待大家多多给予指教。 基础篇&#xff1a; Redis&#xff08;一&#xff09;Redis&#xff08;二&#xff09;Redis&#xff08;三&#xff09;Redis&#x…...

Windows网络安全基础

随着互联网的发展和普及&#xff0c;Windows网络安全问题愈发严重。在本文中&#xff0c;我们将会介绍Windows网络安全的基本概念&#xff0c;包括网络攻击类型、网络安全威胁、网络安全防御措施等等&#xff0c;帮助初学者更好地了解Windows网络安全。 一、网络攻击类型 网络…...

spring boot知识点4

1.如何监视所有spring boot微服务 安装actuator插件&#xff0c;然后通过接口查询 /actuator/health 2.spring boot项目性能如何优化 a.优化启动时间&#xff0c;去除重复的依赖 b.JVM优化&#xff08;java虚拟机优化&#xff09;&#xff0c;限制堆的最小最大值 c.数据库…...

【大模型系列篇】DeepSeek-R1如何通过强化学习有效提升大型语言模型的推理能力?

如何通过强化学习&#xff08;RL&#xff09;有效提升大型语言模型&#xff08;LLM&#xff09;的推理能力&#xff1f; 《DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》由DeepSeek-AI团队撰写&#xff0c;主要介绍了他们开发的第一代…...

主表增一个子表批量新增

1、在新增接口里&#xff0c;先随机生成编码&#xff0c;生成RedisLock&#xff0c;逻辑校验&#xff0c;Dto转bean&#xff0c;新增主表&#xff0c;获取主表的ID&#xff0c;新增子表&#xff0c;最后释放锁 2、在修改接口里&#xff0c;获取主表ID&#xff0c;先修改主表&am…...

Llama 3.1 本地电脑部署 Linux系统 【轻松简易】

本文分享在自己的本地电脑部署 llama3.1&#xff0c;而且轻松简易&#xff0c;快速上手。 这里借助Ollama工具&#xff0c;在Linux系统中进行大模型部署~ Llama3.1&#xff0c;有三个版本&#xff1a;8B、70B、405B Llama 3.1 405B 是第一个公开可用的模型&#xff0c;在常识…...

langchain系列 - FewShotPromptTemplate 少量示例

导读 环境&#xff1a;OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3 背景&#xff1a;前期忙碌的开发阶段结束&#xff0c;需要沉淀自己的应用知识&#xff0c;过一遍LangChain 时间&#xff1a;20250220 说明&#xff1a;技术梳理&#xff0c;针对FewShotP…...

详细介绍下软件生命周期的各个阶段以及常见的软件生命周期模型

软件生命周期&#xff08;Software Life Cycle&#xff09;是指软件从需求分析到最终退役的整个过程。通常&#xff0c;软件生命周期可以划分为以下几个主要阶段&#xff1a; 一、软件生命周期的主要阶段 需求分析&#xff08;Requirements Analysis&#xff09; 与客户沟通&am…...

重构谷粒商城07:Git一小时快速起飞指南

重构谷粒商城07&#xff1a;Git一小时快速起飞指南 前言&#xff1a;这个系列将使用最前沿的cursor作为辅助编程工具&#xff0c;来快速开发一些基础的编程项目。目的是为了在真实项目中&#xff0c;帮助初级程序员快速进阶&#xff0c;以最快的速度&#xff0c;效率&#xff…...

设计模式教程:命令模式(Command Pattern)

1. 什么是命令模式&#xff1f; 命令模式&#xff08;Command Pattern&#xff09;是一种行为型设计模式。它将请求封装成一个对象&#xff0c;从而使你能够用不同的请求、队列和日志请求以及支持可撤销操作。 简单来说&#xff0c;命令模式通过把请求封装成对象的方式解耦了…...

Qt中使用QPdfWriter类结合QPainter类绘制并输出PDF文件

一.类的介绍 1.QPdfWriter介绍 Qt中提供了一个直接可以处理PDF的类&#xff0c;这就是QPdfWriter类。 &#xff08;1&#xff09;PDF文件生成 支持创建新的PDF文件或覆盖已有文件&#xff0c;通过构造函数直接绑定文件路径或QFile对象&#xff1b; 默认生成矢量图形PDF&#…...

Android开发-深入解析Android中的AIDL及其应用场景

深入解析 Android 中的 AIDL 及其应用场景 1. 前言2. AIDL 的核心概念3. AIDL 的实现步骤3.1. 定义 AIDL 接口文件3.2. 实现服务端&#xff08;Service&#xff09;3.3. 客户端绑定与调用 4. AIDL 的典型应用场景4.1. 多进程应用4.2. 与系统服务交互4.3. 高性能 IPC4.4. 跨应用…...

RT-Thread+STM32L475VET6实现红外遥控实验

文章目录 前言一、板载资源介绍二、具体步骤1. 确定红外接收头引脚编号2. 下载infrared软件包3. 配置infrared软件包4. 打开STM32CubeMX进行相关配置4.1 使用外部高速时钟&#xff0c;并修改时钟树4.2 打开定时器16(定时器根据自己需求调整)4.3 打开串口4.4 生成工程 5. 打开HW…...

【机器学习】衡量线性回归算法最好的指标:R Squared

衡量线性回归算法最好的指标&#xff1a;R Squared 一、摘要二、回归算法评价指标与R Squared指标介绍三、R Squared的编程实践 一、摘要 本文主要介绍了线性回归算法中用于衡量模型优劣的重要指标——R Squared&#xff08;R方&#xff09;。R方用于比较模型预测结果与实际结…...

设计模式-Java

一、创建型模式 1. 单例模式 定义 确保一个类只有一个实例&#xff0c;并提供一个全局访问点。 实现方式 饿汉式&#xff08;线程安全&#xff0c;但可能浪费资源&#xff09; public class Singleton {// 静态变量&#xff0c;类加载时初始化private static final Singlet…...

代码讲解系列-CV(五)——语义分割基础

文章目录 一、图像分割标注1.1 Labelme标注1.2 SAM辅助1.3 json格式 二、数据解析2.1 Dataset2.2 train.py2.2.1 取参2.2.2 分割和数据集的读取 三、Unet网络搭建3.1 Unet3.2 Network 四、损失函数和指标4.1 DICE系数4.2 损失函数4.3 半精度训练 五、SAM六、作业 语义分割是图片…...

在mfc中使用自定义三维向量类和计算多个三维向量的平均值

先添加一个普通类, Vector3.h, // Vector3.h: interface for the Vector3 class. // //#if !defined(AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_) #define AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_#if _MSC_VER > 1000 #p…...

RDMA ibverbs_API功能说明

设备管理 获取当前活动网卡 返回当前rdma设备列表 struct ibv_device **ibv_get_device_list(int *num_devices);//使用 struct ibv_device **dev_list ibv_get_device_list(NULL);获取网卡名 返回网卡名字字符串&#xff1a;如"mlx5_0"&#xff0c;一般通过网卡…...

【C++语言】string 类

一、为什么要学习 string 类 C语言中&#xff0c;字符串是以 “\0” 结尾的一些字符的集合&#xff0c;为了操作方便&#xff0c;C标准库中提供了一些 str 系列的库函数&#xff0c;但是这些库函数与字符串是分离开的&#xff0c;不太符合 OOP 的思想&#xff0c;而且底层空间需…...

快速上手gdb/cgdb

Linux调试器-gdb使用 1.背景2.调试原理、技巧命令2.1指令2.2 本质2.3 技巧 1.背景 程序的发布方式有两种&#xff0c;debug模式和release模式 Linux gcc/g出来的二进制程序&#xff0c;默认是release模式 要使用gdb调试&#xff0c;必须在源代码生成二进制程序的时候, 加上 -g…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...