当前位置: 首页 > news >正文

【简单的C++围棋游戏开发示例】

C++围棋游戏开发简单示例(控制台版)

‌核心代码实现‌


#include <iostream>
#include <vector>
#include <queue>
using namespace std;const int SIZE = 9;  // 简化棋盘为9x9‌:ml-citation{ref="1" data="citationList"}
int board[SIZE][SIZE] = {0};  // 0:空 1:黑 2:白‌:ml-citation{ref="1,2" data="citationList"}
pair<int, int> lastRemoved = {-1, -1};  // 记录上一步提子位置(简化打劫规则)‌:ml-citation{ref="1" data="citationList"}// 显示棋盘
void displayBoard() {cout << "  ";for (int i = 0; i < SIZE; i++) cout << i << " ";cout << "\n";for (int y = 0; y < SIZE; y++) {cout << y << " ";for (int x = 0; x < SIZE; x++) {char c = (board[y][x] == 1) ? 'B' : (board[y][x] == 2) ? 'W' : '+';cout << c << " ";}cout << "\n";}
}// 检查坐标合法性
bool isValid(int x, int y) {return x >= 0 && x < SIZE && y >= 0 && y < SIZE;
}// BFS计算气(Liberty)
int calculateLiberty(int x, int y, int color) {bool visited[SIZE][SIZE] = {false};queue<pair<int, int>> q;q.push({x, y});visited[y][x] = true;int liberty = 0;vector<pair<int, int>> dirs = {{0,1}, {1,0}, {0,-1}, {-1,0}};while (!q.empty()) {auto [cx, cy] = q.front();q.pop();for (auto [dx, dy] : dirs) {int nx = cx + dx, ny = cy + dy;if (!isValid(nx, ny) || visited[ny][nx]) continue;if (board[ny][nx] == 0) liberty++;else if (board[ny][nx] == color) {visited[ny][nx] = true;q.push({nx, ny});}}}return liberty;
}// 提子逻辑
void removeGroup(int x, int y, int color) {queue<pair<int, int>> q;q.push({x, y});board[y][x] = 0;vector<pair<int, int>> dirs = {{0,1}, {1,0}, {0,-1}, {-1,0}};while (!q.empty()) {auto [cx, cy] = q.front();q.pop();for (auto [dx, dy] : dirs) {int nx = cx + dx, ny = cy + dy;if (isValid(nx, ny) && board[ny][nx] == color) {board[ny][nx] = 0;q.push({nx, ny});}}}
}// 落子逻辑
bool placeStone(int x, int y, int color) {if (!isValid(x, y) || board[y][x] != 0) return false;board[y][x] = color;vector<pair<int, int>> dirs = {{0,1}, {1,0}, {0,-1}, {-1,0}};// 检查周围敌方棋子是否无气for (auto [dx, dy] : dirs) {int nx = x + dx, ny = y + dy;if (isValid(nx, ny) && board[ny][nx] != 0 && board[ny][nx] != color) {if (calculateLiberty(nx, ny, board[ny][nx]) == 0) {removeGroup(nx, ny, board[ny][nx]);lastRemoved = {x, y};  // 记录提子位置‌:ml-citation{ref="1" data="citationList"}}}}// 检查自身棋子是否存活if (calculateLiberty(x, y, color) == 0) {board[y][x] = 0;  // 自杀规则return false;}return true;
}int main() {int currentPlayer = 1;  // 黑方先手while (true) {displayBoard();int x, y;cout << "玩家" << ((currentPlayer == 1) ? "黑(B)" : "白(W)") << "输入坐标(x y): ";cin >> x >> y;if (placeStone(x, y, currentPlayer)) {currentPlayer = (currentPlayer == 1) ? 2 : 1;  // 切换玩家‌:ml-citation{ref="3" data="citationList"}} else {cout << "落子无效,请重新输入!\n";}}return 0;
}

核心功能说明‌

1.棋盘初始化‌

使用9x9简化棋盘,通过二维数组board存储状态‌12。
符号B表示黑子,W表示白子,+表示空位‌3。

2‌.落子与提子‌

通过placeStone()函数实现落子合法性检查,包括自杀规则和敌方提子逻辑‌12。
使用BFS算法计算棋子群的气,气为0时触发removeGroup()提子‌14。

3.交互与显示‌

控制台输入坐标,动态更新棋盘状态‌3。
简化打劫规则:仅记录最后一次提子位置(未完全实现劫争判断)‌1。

4.编译与运行‌

‌环境要求‌

支持C++11标准的编译器(如GCC/Clang/Visual Studio)‌13。
控制台模式下直接运行,无需图形库依赖‌3。

5.操作说明‌

输入坐标格式为x y(例如3 4表示第3列第4行)。
若落子位置无效(如已有棋子或导致自杀),提示重新输入‌3。

6.扩展方向‌

‌规则完善‌
增加劫争判断:通过lastRemoved变量阻止立即回提‌1。
实现胜负判定:通过计算领地或活子数量‌24。

相关文章:

【简单的C++围棋游戏开发示例】

C围棋游戏开发简单示例&#xff08;控制台版&#xff09; ‌核心代码实现‌ #include <iostream> #include <vector> #include <queue> using namespace std;const int SIZE 9; // 简化棋盘为9x9‌:ml-citation{ref"1" data"citationList&…...

单片机中的基础外设GPIO的知识和应用—(6)

GPIO&#xff08;通用输入输出&#xff09;是单片机与外部世界交互的重要接口。单片机的GPIO引脚可以灵活配置为输入、输出、中断或复用功能&#xff0c;广泛应用于LED控制、按键读取、传感器通信等场景。下文以STM32F103C8T6的GPIO为例。有些51单片机IO功能有的稍微有不同&…...

10-Agent循环分析新闻并输出总结报告

目录 关键词 摘要 速览 自动新闻总结与行业分析报告生成流程 创建深度行业分析报告的工作流 测试用例执行与调试 业务逻辑与循环处理任务 演示如何在循环体中添加链接读取工具 使用大模型处理和分析新闻信息 构建循环分析新闻并生成综合报告的流程 分析和优化慢速循…...

十二、Redis Cluster(集群)详解:原理、搭建、数据分片与读写分离

Redis Cluster(集群)详解:原理、搭建、数据分片与读写分离 Redis Cluster 是 Redis 官方提供的分布式存储方案,通过数据分片(Sharding)实现 水平扩展(scalability),并提供 高可用性(HA) 和 故障自动转移(failover) 能力,解决了单机 Redis 内存受限、主从复制故障…...

贪心算法解题框架+经典反例分析,效率提升300%

贪心算法是一种在每一步选择中都采取当前状态下的最优决策&#xff0c;从而希望最终达到全局最优解的算法策略。以下从其定义、特点、一般步骤、应用场景及实例等方面进行讲解&#xff1a; 定义与基本思想 • 贪心算法在对问题求解时&#xff0c;总是做出在当前看来是最好的选…...

策略设计模式-下单

1、定义一个下单context类 通过这类来判断具体使用哪个实现类&#xff0c;可以通过一些枚举或者条件来判断 import com.alibaba.fastjson.JSON; import com.tc.common.exception.BusinessException; import com.tc.common.user.YjkUserDetails; import com.tc.institution.cons…...

Go加spy++隐藏窗口

最近发现有些软件的窗口就像狗皮膏药一样&#xff0c;关也关不掉&#xff0c;一点就要登录&#xff0c;属实是有点不爽了。 窗口的进程不能杀死&#xff0c;但是窗口我不想要。思路很简单&#xff0c;用 spy 找到要隐藏的窗口的句柄&#xff0c;然后调用 Windows 的 ShowWindo…...

React基础之tsx语法

tsx在jsx的基础上添加了新的类型&#xff0c;除此之外没有任何区别 事件绑定 function App() { const handleClick()>{ console.log(button被点击了); } return( <div className"App"> <button onClick{handleClick}>click me</button> </di…...

一体机:DeepSeek性能的“隐形枷锁”!

一体机是DeepSeek交付的最佳方式吗&#xff1f; 恰恰相反&#xff0c;一体机是阻碍DeepSeek提升推理性能的最大绊脚石。 为啥&#xff1f; 只因DeepSeek这个模型有点特殊&#xff0c;它是个高稀疏度的MoE模型。 MoE这种混合专家模型&#xff0c;设计的初衷是通过“激活一堆专…...

ALBEF的动量蒸馏(Momentum distillation)

简单记录学习~ 一、‌传统 ITC Loss 的局限性‌ ‌One-Hot Label 的缺陷‌ 传统对比学习依赖严格对齐的图文对&#xff0c;通过交叉熵损失&#xff08;如 softmax 归一化的相似度矩阵&#xff09;强制模型将匹配的图文对相似度拉高&#xff0c;非匹配对相似度压低‌11。但 one…...

浏览器WEB播放RTSP

注意&#xff1a;浏览器不能直接播放RTSP&#xff0c;必须转换后都能播放。这一点所有的播放都是如此。 参考 https://github.com/kyriesent/node-rtsp-stream GitHub - phoboslab/jsmpeg: MPEG1 Video Decoder in JavaScript 相关文件方便下载 https://download.csdn.net…...

将PDF转为Word的在线工具

参考视频&#xff1a;外文翻译 文章目录 一、迅捷PDF转换器二、Smallpdf 一、迅捷PDF转换器 二、Smallpdf...

03. 对象的创建,存储和访问原理

文章目录 01. 对象创建1.1 创建过程概览1.2 类加载检查1.3 为对象分配内存1.4 将内存空间初始化为零值1.5 设置对象的必要信息1.6 总结 02. 对象的内存布局2.1 对象头区域2.2 实例数据区域2.3 对齐填充区域2.4 总结 03. 对象的访问定位其他介绍01.关于我的博客 注&#xff1a;读…...

机器学习-GBDT算法

目录 一. GBDT 核心思想 二. GBDT 工作原理 ​**(1) 损失函数优化** ​**(2) 负梯度拟合** ​**(3) 模型更新** 三. GBDT 的关键步骤 四. GBDT 的核心优势 ​**(1) 高精度与鲁棒性** ​**(2) 处理缺失值** ​**(3) 特征重要性分析** ​五. GBDT 的缺点 ​**(1) 训练…...

redis基础结构

title: redis基础结构 date: 2025-03-04 08:39:12 tags: redis categories: redis笔记 Redis入门 &#xff08;NoSQL, Not Only SQL&#xff09; 非关系型数据库 关系型数据库&#xff1a;以 表格 的形式存在&#xff0c;以 行和列 的形式存取数据&#xff0c;一系列的行和列被…...

【keil】一种将STM32的armcc例程转换为armclang的方式

【keil】一种将所有armcc例程转换为armclang的方式 改的原因第一步下载最新arm6第二步编译成功 第三步去除一些warning编译成功 我这边用armclang去编译的话&#xff0c;主要是freertos中的portmacro.h和port.c会报错 改的原因 我真的服了&#xff0c;现在大部分的单片机例程都…...

计算机视觉算法实战——表面缺陷检测(表面缺陷检测)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​ 1. 引言 表面缺陷检测是计算机视觉领域中的一个重要研究方向&#xff0c;旨在通过图像处理和机器学习技术自动检测产品表面的缺陷&…...

window下的docker内使用gpu

Windows 上使用 Docker GPU需要进行一系列的配置和步骤。这是因为 Docker 在 Windows 上的运行环境与 Linux 有所不同,需要借助 WSL 2(Windows Subsystem for Linux 2)和 NVIDIA Container Toolkit 来实现 GPU 的支持。以下是详细的流程: 一、环境准备 1.系统要求 Window…...

Modbus协议(TCP)

从今开始&#xff0c;会详细且陆续整理各类的通信协议&#xff0c;以便在需要且自身忘记的情况下&#xff0c;迅速复习。如有错误之处&#xff0c;还请批评指正。 一、Modbus协议的简述 Modbus协议作为应用层协议&#xff0c;基于主从设备模型&#xff0c;主设备负责请求消息&…...

虚拟系统配置实验报告

一、实验拓扑图 二、实验配置 要求一&#xff1a; 虚拟系统&#xff1a; 设置管理&#xff1a; 进行信息配置 R1配置 虚拟系统配置 a&#xff1a; b&#xff1a; c&#xff1a; 测试 a–>b&#xff1a; 检测...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...