恶劣天候三维目标检测论文列表整理
恶劣天候三维目标检测论文列表
图摘自Kradar
🏠 介绍
Hi,这是有关恶劣天气下三维目标检测的论文列表。主要是来源于近3年研究过程中认为有意义的文章。希望能为新入门的研究者提供一些帮助。
可能比较简陋,存在一定的遗漏,欢迎在Issue中提出,我们会及时更新~
github链接:https://github.com/ylwhxht/3D_Object_Detection_in_Adverse_Weather_Paper_List
(觉得有用的话来个⭐,谢谢^ _ ^)
📚 Table of Contents
- Survey
- Dataset
- Weather Quantitative Analysis
- LiDAR Adverse Weather Simulation
- LiDAR Denoiser
- LiDAR-based/with Camera Detector
- 4D Radar-based/with Camera Detector
- LiDAR+3D Radar Fusion Detector
- LiDAR+4D Radar Fusion Detector
- with Cooperative Perception
Surveys 🔝
2022
-
Perception and Sensing for Autonomous Vehicles Under Adverse Weather Conditions: A Survey
ISPRS 2022
[paper] -
3D Object Detection for Autonomous Driving: A Survey
Pattern Recognition 2022
[paper]
2023
-
Performance and Challenges of 3D Object Detection Methods in Complex Scenes for Autonomous Driving
TIV 2023
[paper] -
Survey on LiDAR Perception in Adverse Weather Conditions
IV 2023
[paper]
2024
-
Object Detection in Autonomous Vehicles under Adverse Weather: A Review of Traditional and Deep Learning Approaches
Algorithms 2024
[paper] -
Perception Methods for Adverse Weather Based on Vehicle Infrastructure Cooperation System: A Review
Sensors 2024
[paper] -
Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook
TITS 2024
[paper]
2025
- LiDAR Denoising Methods in Adverse Environments: A Review
Sensors 2025
[paper]
Datasets 🔝
2021
-
[DENSE(STF)]: Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
CVPR 2020
[paper] [data] -
[WOD-DA]: Waymo Open Dataset Domain Adaptation
2020
[data]
2022
- [CADC]: Canadian Adverse Driving Conditions Dataset
IJRR 2021
[paper] [data]
2023
-
[Kradar]: K-radar: 4d radar object detection for autonomous driving in various weather conditions
NIPS 2022
[paper] [code&data] -
[WADS]: Winter adverse driving dataset for autonomy in inclement winter weather
Optical Engineering 2023
[paper] [code&data] -
[SemanticSpray++]: SemanticSpray++: A Multimodal Dataset for Autonomous Driving in Wet Surface Conditions
IV 2024
[paper] [code&data]
2024
- Is Your LiDAR Placement Optimized for 3D Scene Understanding?
NIPS 2024
[paper] [code&data]
Weather Quantitative Analysis🔝
2009
- Performance of Laser and Radar Ranging Devices in Adverse Environmental Conditions
Journal of Field Robotics 2009
[paper]
2018
- A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?
IV 2018
[paper]
2020
- Analysis of automotive lidar sensor model considering scattering effects in regional rain environments
Access 2020
[paper]
2021
- A Quantitative Analysis of Point Clouds from Automotive Lidars Exposed to Artificial Rain and Fog
Atmosphere 2021
[paper]
2022
-
Measuring the Influence of Environmental Conditions on Automotive Lidar Sensors
Sensors 2022
[paper] -
Camera and LiDAR analysis for 3D object detection in foggy weather conditions
ICPRS 2022
[paper]
2023
- Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
CVPR 2023
[paper] [code]
2024
- Effect of Fog Particle Size Distribution on 3D Object Detection Under Adverse Weather Conditions
Arxiv 2024
[paper]
LiDAR Adverse Weather Simulation🔝
2018
- [FogSimulation]: A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?
IV 2018
[paper]
2020
- [Fog Simulation]: Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
CVPR 2020
[paper] [code]
2021
-
[Fog Simulation]: Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
ICCV 2021
[paper] [code] -
[Rain Simulation]: Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of Adverse Weather Conditions for 3D Object Detection
Arxiv 2021
[paper] [code]
2022
-
[Snow Simulation]: https://arxiv.org/abs/2203.15118
CVPR 2022
[paper] [code] -
[Spray Simulation]: Reconstruction and Synthesis of Lidar Point Clouds of Spray
RAL 2022
[paper] [code]
2023
-
[Various Simulation]: Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
CVPR 2023
[paper] [code] -
[Snow Simulation]: LiDAR Point Cloud Translation Between Snow and Clear Conditions Using Depth Images and GANs
IV 2023
[paper] -
[Various Simulation]: Robo3D: Towards Robust and Reliable 3D Perception against Corruptions
ICCV 2023
[paper] [code] -
[Snow Simulation]: L-DIG: A GAN-Based Method for LiDAR Point Cloud Processing under Snow Driving Conditions
Sensors 2023
[paper]
2024
-
[Snow Simulation]: LiDAR Point Cloud Augmentation for Adverse Conditions Using Conditional Generative Model
Remote Sens. 2024
[paper] -
[Rain Simulation]: Sunshine to Rainstorm: Cross-Weather Knowledge Distillation for Robust 3D Object Detection
AAAI 2024
[paper] [code]
2025
- [Snow Simulation]: Adverse Weather Conditions Augmentation of LiDAR Scenes with Latent Diffusion Models
Arxiv. 2025
[paper]
LiDAR Denoiser🔝
2018
- De-noising of lidar point clouds corrupted by snowfall
CRV 2018
[paper]
2020
-
Fast and Accurate Desnowing Algorithm for LiDAR Point Clouds
Access 2020
[paper] -
CNN-based Lidar Point Cloud De-Noising in Adverse Weather
RAL 2020
[paper] [code]
2021
- DSOR: A Scalable Statistical Filter for Removing Falling Snow from LiDAR Point Clouds in Severe Winter Weather
Arxiv 2021
[paper] [code]
2022
-
LiSnowNet: Real-time Snow Removal for LiDAR Point Cloud
IROS 2022
[paper] -
De-snowing LiDAR Point Clouds With Intensity and Spatial-Temporal Features
ICRA 2022
[paper] -
A Scalable and Accurate De-Snowing Algorithm for LiDAR Point Clouds in Winter
Remote Sens. 2022
[paper] -
AdverseNet: A LiDAR Point Cloud Denoising Network for Autonomous Driving in Rainy Snowy and Foggy Weather
ICUS 2022
[paper] [code] -
LiSnowNet: Real-time Snow Removal for LiDAR Point Clouds
IROS 2022
[paper] [code] -
4denoisenet: Adverse weather denoising from adjacent point clouds
RAL. 2022
[paper] [code] -
Adaptive Two-Stage Filter for De-snowing LiDAR Point Clouds
ICCRI 2022
[paper]
2023
-
RGOR: De-noising of LiDAR point clouds with reflectance restoration in adverse weather
ICTC. 2023
[paper] -
DCOR: Dynamic Channel-Wise Outlier Removal to De-Noise LiDAR Data Corrupted by Snow
ICIP 2023
[paper] -
GAN Inversion Based Point Clouds Denoising in Foggy Scenarios for Autonomous Driving
ICDL 2023
[paper]
2024
-
Denoising Point Clouds with Intensity and Spatial Features in Rainy Weather
TITS 2024
[paper] -
RGB-LiDAR sensor fusion for dust de-filtering in autonomous excavation applications
Automation in Construction 2024
[paper] -
TripleMixer: A 3D Point Cloud Denoising Model for Adverse Weather
Arxiv 2024
[paper] [code] -
An improved point cloud denoising method in adverse weather conditions based on PP-LiteSeg network
PeerJ Computer Science 2024
[paper] -
Denoising Framework Based on Multiframe Continuous Point Clouds for Autonomous Driving LiDAR in Snowy Weather
Sensors 2024
[paper] [code] -
Dust De-Filtering in LiDAR Applications With Conventional and CNN Filtering Methods
Sensors 2024
[paper] -
AdWeatherNet: Adverse Weather Denoising with Point Cloud Spatiotemporal Attention
VCIP 2024
[paper] [code] -
3D-UnOutDet: A Fast and Efficient Unsupervised Snow Removal Algorithm for 3D LiDAR Point Clouds
Authorea Preprints 2024
[paper] [code]
2025
- Semantic Segmentation Based Rain and Fog Filtering Only by LiDAR Point Clouds
Sensors. 2025
[paper]
LiDAR-based/with Camera Detector🔝
2020
- 1st Place Solution for Waymo Open Dataset Challenge - 3D Detection and Domain Adaptation
Arxiv 2020
[paper]
2021
- SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation
CVPR 2021
[paper]
2022
-
Rethinking LiDAR Object Detection in adverse weather conditions
ICRA 2022
[paper] -
Towards Robust 3D Object Detection In Rainy Conditions ITSC 2022
[paper] [code] -
LossDistillNet: 3D Object Detection in Point Cloud Under Harsh Weather Conditions
Access 2022
[paper] -
Robust 3D Object Detection in Cold Weather Conditions
IV 2022
[paper] -
Robust-FusionNet: Deep Multimodal Sensor Fusion for 3-D Object Detection Under Severe Weather Conditions
TIM 2022
[paper]
2023
-
A Point Cloud-based 3D Object Detection Method for Winter Weather
ISCER 2023
[paper] -
Source-free Unsupervised Domain Adaptation for 3D Object Detection in Adverse Weather
ICRA 2023
[paper] [code] -
Enhancing Lidar-based Object Detection in Adverse Weather using Offset Sequences in Time
ICECET 2023
[paper]
2024
-
Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather
Transportation research part C: emerging technologies 2024
[paper] -
Sunshine to Rainstorm: Cross-Weather Knowledge Distillation for Robust 3D Object Detection
AAAI 2024
[paper] [code] -
SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather
ECCV 2024
[paper] [code] -
LiDAR Point Cloud Augmentation for Adverse Conditions Using Conditional Generative Model
Remote Sensing 2024
[paper]
2025
-
AWARDistill: Adaptive and robust 3D object detection in adverse conditions through knowledge distillation,Expert Systems with Applications
2025
[paper] -
3D vision object detection for autonomous driving in fog using LiDaR
Simulation Modelling Practice and Theory 2025
[paper]
4D Radar-based/with Camera Detector 🔝
2022
- [RTNH]: K-radar: 4d radar object detection for autonomous driving in various weather conditions
NIPS 2022
[paper] [code&data]
2024
- TL-4DRCF: A Two-Level 4-D Radar–Camera Fusion Method for Object Detection in Adverse Weather
Sensors 2024
[paper]
LiDAR+3D Radar Fusion Detector🔝
2020
- Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
CVPR 2020
[paper] [code]
2021
- Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals
CVPR 2021
[paper] [code]
2022
- Modality-Agnostic Learning for Radar-Lidar Fusion in Vehicle Detection
CVPR 2022
[paper]
2023
-
ST-MVDNET++: IMPROVE VEHICLE DETECTION WITH LIDAR-RADAR GEOMETRICAL AUGMENTATION VIA SELF-TRAINING
ICASSP 2023
[paper] [code] -
Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object Detection
CVPR 2023
[paper]
2024
-
3D Object Detection Algorithm in Adverse Weather Conditions Based on LiDAR-Radar Fusion
CCC 2024
[paper] -
RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object Detection Systems
TCSVT 2024
[paper] [code] -
SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather
ECCV 2024
[paper] [code] -
TransFusion: Multi-Modal Robust Fusion for 3D Object Detection in Foggy Weather Based on Spatial Vision Transformer
TITS 2024
[paper]
LiDAR+4D Radar Fusion Detector🔝
2024
-
Towards Robust 3D Object Detection with LiDAR and 4D Radar Fusion in Various Weather Conditions
CVPR 2024
[paper] [code] -
LiDAR-based All-weather 3D Object Detection via Prompting and Distilling 4D Radar
ECCV 2024
[paper] [code]
2025
- L4DR: LiDAR-4DRadar Fusion for Weather-Robust 3D Object Detection
AAAI 2025
[paper] [code]
with Cooperative Perception 🔝
2024
-
V2X-DGW: Domain Generalization for Multi-agent Perception under Adverse Weather Conditions
Arxiv 2024
[paper] -
Weather-Aware Collaborative Perception With Uncertainty Reduction has been published
TITS 2024
[paper] [data]
2025
- V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion
CVPR 2025
[paper] [code]
相关文章:

恶劣天候三维目标检测论文列表整理
恶劣天候三维目标检测论文列表 图摘自Kradar 🏠 介绍 Hi,这是有关恶劣天气下三维目标检测的论文列表。主要是来源于近3年研究过程中认为有意义的文章。希望能为新入门的研究者提供一些帮助。 可能比较简陋,存在一定的遗漏,欢迎…...

conda的环境起的jupyter用不了已经安装的包如何解决
当你在使用Conda环境中的Jupyter Notebook时遇到无法读取某些库或模块的问题,通常是由以下几个原因引起的: 环境未激活:确保你已经在正确的Conda环境中激活了Jupyter Notebook。 库未安装:可能你需要的库没有在当前的Conda环境中…...

蓝桥杯题型
蓝桥杯题型分类 二分 123 传送门 1. 小区间的构成 假设数列的构成是如下形式: 第 1 个区间包含 1 个元素(1)。第 2 个区间包含 2 个元素(1 2)。第 3 个区间包含 3 个元素(1 2 3)。第 4 个区…...

STM32-I2C通信协议
一:I2C通信协议 就是在串口通信上满足四个要求 要求1:删掉一根通信线,防止资源浪费,只能在同一根线上进行发送和接收要求2:需要一个应答机制,没发送一个字节都有一次应答要求3:一根线上能同时…...

taosd 写入与查询场景下压缩解压及加密解密的 CPU 占用分析
在当今大数据时代,时序数据库的应用越来越广泛,尤其是在物联网、工业监控、金融分析等领域。TDengine 作为一款高性能的时序数据库,凭借独特的存储架构和高效的压缩算法,在存储和查询效率上表现出色。然而,随着数据规模…...

uniapp微信小程序vue3自定义tabbar
在App.vue隐藏原生tabbar,也可以在pages.json中配置 二选一就好了 创建 CustomTabBar 公共组件 <template><view class"custom-tab-bar" :style"{paddingBottom: safeAreaHeight px}"><view class"tab-bar-item" :…...

BUUCTF——[GYCTF2020]FlaskApp1 SSTI模板注入/PIN学习
目录 一、网页功能探索 二、SSTI注入 三、方法一 四、方法二 使用PIN码 (1)服务器运行flask登录所需的用户名 (2)modename (3)flask库下app.py的绝对路径 (4)当前网络的mac地…...

如何用Kimi生成PPT?秒出PPT更高效!
做PPT是不是总是让你头疼?😩 快速制作出专业的PPT,今天我们要推荐两款超级好用的AI工具——Kimi 和 秒出PPT!我们来看看哪一款更适合你吧!🚀 🥇 Kimi:让PPT制作更轻松 Kimi的生成效…...

数据结构(回顾)
数据结构(回顾) 回顾 不同点顺序表链表存储空间上物理上一定连续逻辑上连续,物理上不一定连续随机访问支持,时间复杂度O(1)不支持,时间复杂度O(N)任意位置插入或者删除元素可能需要挪动元素,效率低&#…...

全国产!瑞芯微3562Mini(2GHz四核A53 NPU)工业开发板规格书
评估板简介 创龙科技 TL3562-MiniEVM 是一款基于瑞芯微 RK3562J/RK3562 处理器设计的四核 AR M Cortex-A53 单核 ARM Cortex-M0 国产工业评估板,主频高达 2.0GHz。评估板由核心板和评估底板组成,核心板 CPU、ROM、RAM、电源、晶振等所有元器件均采用国…...

鸿蒙HarmonyOS评论功能小demo
评论页面小demo 效果展示 1.拆解组件,分层搭建 我们将整个评论页面拆解为三个组件,分别是头部导航,评论项,回复三个部分,然后统一在index界面导入 2.头部导航界面搭建 Preview Component struct HmNavBar {// 属性&a…...

异常(6)
今天我们继续来讲异常的内容,关于异常的捕获和声明,也是在处理异常的的重要方式,话不多说,来看. 异常的捕获 异常的捕获,也就是异常,的具体处理方式,主要有两种,主要有两种:异常声明throws以及try-catch捕获处理. 3.1异常声明throws. 处在方法声明时参数列表之后…...

精选一百道备赛蓝桥杯——2.K倍区间
解题思路 任何两个前缀区间的和对k取模的值相等,则由大的前缀区间减掉小的前缀区间所形成的区间的必定是K倍区间。因此我们可以对具有区间和%k值相等任何两个区间进行组合,再将这些值加起来就得到结果!证明: 假设一个数列为a1,a2…...

编译Telegram Desktop
目录 一、前言 二、环境准备 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 三、编译 四、总结和学习 一、前言 Telegram 是一款全球广泛使用的即时通讯软件,以其强大的隐私保护、跨平台同步和丰富的功能而闻名。它支持一对一聊天、群组(最多20万成员&am…...

玩转python: 掌握Python数据结构之链表
链表是计算机科学中最基础的数据结构之一,也是许多高级数据结构和算法的基础。本文将带你从零开始,逐步掌握链表的概念、实现和应用。通过丰富的案例和通俗易懂的解释,你将能够轻松理解并应用链表。 什么是链表? 链表是一种线性…...

upload-labs详解(1-12)文件上传分析
目录 uploa-labs-main upload-labs-main第一关 前端防御 绕过前端防御 禁用js Burpsuite抓包改包 upload-labs-main第二关 上传测试 错误类型 upload-labs-env upload-labs-env第三关 上传测试 查看源码 解决方法 重命名,上传 upload-labs-env第四关…...

RAG系统(检索增强生成)的优化策略
RAG(检索增强生成)系统的优化可以从多个方面入手,主要包括数据、查询、检索、生成、框架和评估等几个重要环节。本文将详细介绍这些优化策略,并为每个环节提供具体的操作方法。 一、数据优化 1. 数据清洗和增强 数据质量直接影响检索和生成的效果,因此需要进行细致的数据…...

写毕业论文用哪个AI好?这6款AIGC论文工具给你答案
撰写毕业论文是一项艰巨的任务,AIGC 论文工具的出现为同学们提供了有力支持。以下 6 款工具在功能、适用场景等方面各有优势,助你高效完成毕业论文。 文赋 AI 论文 文赋 AI 论文堪称毕业论文写作的得力助手。它的生成速度令人惊叹,短短 5 分…...

loadingcache优化
问题分析 通过当前现场的火焰图进行分析 原本的loadingcache public LoadingCache<Integer, Student> map Caffeine.newBuilder().refreshAfterWrite(CONTRACT_CACHE_HOURS, TimeUnit.HOURS).maximumSize(CONTRACT_CONFIG_CACHE_SIZE).recordStats().build(key -> …...

【Vue3 Element UI - Plus + Tyscript 实现Tags标签输入及回显】
Vue3 Element Plus TypeScript 实现 Tags 标签输入及回显 在开发后台管理系统或表单页面时,动态标签(Tags) 是一个常见的功能需求。用户可以通过输入框添加标签,并通过关闭按钮删除标签,同时还需要支持标签数据的提…...

STM32 子设备通过CAN发送数据到主设备
采集ADC、GPS经纬坐标、温湿度数据、大气压数据通过CAN方式发送给主设备端,帧ID按照如下定义: 我尼玛一个标准帧ID位数据是11位,扩展帧才是111829位,它说最开头的是四位是真类型,并给我如下解释: 它把帧的定…...

Python可视化——地理空间型图表(自用)
地图信息可视化的实现就是将不可展开的曲面上的地理坐标信息转化为二维平面进行显示,这个过程也叫地图投影(空间三维投影到平面二维) 地图投影的要求:等面积、等角度、等距离。总的来说就是映射到二维平面中的任何点通过比例尺放大…...

WordPress报502错误问题解决-php-fpm-84.service loaded failed failed LSB: starts php-fpm
文章目录 问题描述问题排查问题解决 问题描述 服务器环境: php:8.4MySQL:8.0Nginx:1.26.2 在访问站点时,一直报502,而两天前还能正常访问。 问题排查 导致502的问题很多,比如站点访问量太大…...

Python在SEO中的自动化应用爬虫开发与日志分析实例
引言 搜索引擎优化(SEO)是数字营销中至关重要的一环,旨在提高网站在搜索引擎结果页面(SERP)中的排名。随着互联网数据的爆炸式增长,手动进行SEO分析和管理变得愈发困难。Python作为一种强大的编程语言&…...

thingsboard edge 在windows 环境下的配置
按照官方文档:Installing ThingsBoard Edge on Windows | ThingsBoard Edge,配置好java环境和PostgreSQL。 下载对应的windows 环境下的tb-edge安装包。下载附件 接下来操作具体如下 步骤1,需要先在thingsboard 服务上开启edge 权限 步骤2…...

nnMamba:基于状态空间模型的3D生物医学图像分割、分类和地标检测
摘要 本文提出了一种基于状态空间模型(SSMs)的创新架构——nnMamba,用于解决3D生物医学图像分割、分类及地标检测任务中的长距离依赖建模难题。nnMamba结合了卷积神经网络(CNN)的局部特征提取能力与SSMs的全局上下文建…...

nginx 配置403页面(已亲测)
问题:GET请求访问漏洞url即可看到泄露的内网ip 解决方式: 1.配置nginx 不显示真实Ip 2.限制接口只能是POST请求 具体配置: 编写一个403.html 在nginx的配置文件中,配置location参数: location /api/validationCode…...

SyntaxError: Invalid or unexpected token in JSON at position x
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》、《前端求职突破计划》 🍚 蓝桥云课签约作者、…...

Uncaught TypeError: Cannot read properties of undefined (reading ‘xxx‘)
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》、《前端求职突破计划》 🍚 蓝桥云课签约作者、…...

Nginx 跨域配置详细讲解
一、跨域请求概述 跨域资源共享(CORS,Cross-Origin Resource Sharing)是一种机制,它使用额外的HTTP头部来告诉浏览器让运行在一个origin(域)上的Web应用被准许访问来自不同源服务器上的指定的资源。当一个资…...