当前位置: 首页 > news >正文

恶劣天候三维目标检测论文列表整理

恶劣天候三维目标检测论文列表

在这里插入图片描述

图摘自Kradar

🏠 介绍

Hi,这是有关恶劣天气下三维目标检测的论文列表。主要是来源于近3年研究过程中认为有意义的文章。希望能为新入门的研究者提供一些帮助。

可能比较简陋,存在一定的遗漏,欢迎在Issue中提出,我们会及时更新~

github链接:https://github.com/ylwhxht/3D_Object_Detection_in_Adverse_Weather_Paper_List
(觉得有用的话来个⭐,谢谢^ _ ^)

📚 Table of Contents

  • Survey
  • Dataset
  • Weather Quantitative Analysis
  • LiDAR Adverse Weather Simulation
  • LiDAR Denoiser
  • LiDAR-based/with Camera Detector
  • 4D Radar-based/with Camera Detector
  • LiDAR+3D Radar Fusion Detector
  • LiDAR+4D Radar Fusion Detector
  • with Cooperative Perception

Surveys 🔝

2022

  • Perception and Sensing for Autonomous Vehicles Under Adverse Weather Conditions: A Survey
    ISPRS 2022
    [paper]

  • 3D Object Detection for Autonomous Driving: A Survey
    Pattern Recognition 2022
    [paper]

2023

  • Performance and Challenges of 3D Object Detection Methods in Complex Scenes for Autonomous Driving
    TIV 2023
    [paper]

  • Survey on LiDAR Perception in Adverse Weather Conditions
    IV 2023
    [paper]

2024

  • Object Detection in Autonomous Vehicles under Adverse Weather: A Review of Traditional and Deep Learning Approaches
    Algorithms 2024
    [paper]

  • Perception Methods for Adverse Weather Based on Vehicle Infrastructure Cooperation System: A Review
    Sensors 2024
    [paper]

  • Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook
    TITS 2024
    [paper]

2025

  • LiDAR Denoising Methods in Adverse Environments: A Review
    Sensors 2025
    [paper]

Datasets 🔝

2021

  • [DENSE(STF)]: Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
    CVPR 2020
    [paper] [data]

  • [WOD-DA]: Waymo Open Dataset Domain Adaptation
    2020
    [data]

2022

  • [CADC]: Canadian Adverse Driving Conditions Dataset
    IJRR 2021
    [paper] [data]

2023

  • [Kradar]: K-radar: 4d radar object detection for autonomous driving in various weather conditions
    NIPS 2022
    [paper] [code&data]

  • [WADS]: Winter adverse driving dataset for autonomy in inclement winter weather
    Optical Engineering 2023
    [paper] [code&data]

  • [SemanticSpray++]: SemanticSpray++: A Multimodal Dataset for Autonomous Driving in Wet Surface Conditions
    IV 2024
    [paper] [code&data]

2024

  • Is Your LiDAR Placement Optimized for 3D Scene Understanding?
    NIPS 2024
    [paper] [code&data]

Weather Quantitative Analysis🔝

2009

  • Performance of Laser and Radar Ranging Devices in Adverse Environmental Conditions
    Journal of Field Robotics 2009
    [paper]

2018

  • A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?
    IV 2018
    [paper]

2020

  • Analysis of automotive lidar sensor model considering scattering effects in regional rain environments
    Access 2020
    [paper]

2021

  • A Quantitative Analysis of Point Clouds from Automotive Lidars Exposed to Artificial Rain and Fog
    Atmosphere 2021
    [paper]

2022

  • Measuring the Influence of Environmental Conditions on Automotive Lidar Sensors
    Sensors 2022
    [paper]

  • Camera and LiDAR analysis for 3D object detection in foggy weather conditions
    ICPRS 2022
    [paper]

2023

  • Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
    CVPR 2023
    [paper] [code]

2024

  • Effect of Fog Particle Size Distribution on 3D Object Detection Under Adverse Weather Conditions
    Arxiv 2024
    [paper]

LiDAR Adverse Weather Simulation🔝

2018

  • [FogSimulation]: A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?
    IV 2018
    [paper]

2020

  • [Fog Simulation]: Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
    CVPR 2020
    [paper] [code]

2021

  • [Fog Simulation]: Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
    ICCV 2021
    [paper] [code]

  • [Rain Simulation]: Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of Adverse Weather Conditions for 3D Object Detection
    Arxiv 2021
    [paper] [code]

2022

  • [Snow Simulation]: https://arxiv.org/abs/2203.15118
    CVPR 2022
    [paper] [code]

  • [Spray Simulation]: Reconstruction and Synthesis of Lidar Point Clouds of Spray
    RAL 2022
    [paper] [code]

2023

  • [Various Simulation]: Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
    CVPR 2023
    [paper] [code]

  • [Snow Simulation]: LiDAR Point Cloud Translation Between Snow and Clear Conditions Using Depth Images and GANs
    IV 2023
    [paper]

  • [Various Simulation]: Robo3D: Towards Robust and Reliable 3D Perception against Corruptions
    ICCV 2023
    [paper] [code]

  • [Snow Simulation]: L-DIG: A GAN-Based Method for LiDAR Point Cloud Processing under Snow Driving Conditions
    Sensors 2023
    [paper]

2024

  • [Snow Simulation]: LiDAR Point Cloud Augmentation for Adverse Conditions Using Conditional Generative Model
    Remote Sens. 2024
    [paper]

  • [Rain Simulation]: Sunshine to Rainstorm: Cross-Weather Knowledge Distillation for Robust 3D Object Detection
    AAAI 2024
    [paper] [code]

2025

  • [Snow Simulation]: Adverse Weather Conditions Augmentation of LiDAR Scenes with Latent Diffusion Models
    Arxiv. 2025
    [paper]

LiDAR Denoiser🔝

2018

  • De-noising of lidar point clouds corrupted by snowfall
    CRV 2018
    [paper]

2020

  • Fast and Accurate Desnowing Algorithm for LiDAR Point Clouds
    Access 2020
    [paper]

  • CNN-based Lidar Point Cloud De-Noising in Adverse Weather
    RAL 2020
    [paper] [code]

2021

  • DSOR: A Scalable Statistical Filter for Removing Falling Snow from LiDAR Point Clouds in Severe Winter Weather
    Arxiv 2021
    [paper] [code]

2022

  • LiSnowNet: Real-time Snow Removal for LiDAR Point Cloud
    IROS 2022
    [paper]

  • De-snowing LiDAR Point Clouds With Intensity and Spatial-Temporal Features
    ICRA 2022
    [paper]

  • A Scalable and Accurate De-Snowing Algorithm for LiDAR Point Clouds in Winter
    Remote Sens. 2022
    [paper]

  • AdverseNet: A LiDAR Point Cloud Denoising Network for Autonomous Driving in Rainy Snowy and Foggy Weather
    ICUS 2022
    [paper] [code]

  • LiSnowNet: Real-time Snow Removal for LiDAR Point Clouds
    IROS 2022
    [paper] [code]

  • 4denoisenet: Adverse weather denoising from adjacent point clouds
    RAL. 2022
    [paper] [code]

  • Adaptive Two-Stage Filter for De-snowing LiDAR Point Clouds
    ICCRI 2022
    [paper]

2023

  • RGOR: De-noising of LiDAR point clouds with reflectance restoration in adverse weather
    ICTC. 2023
    [paper]

  • DCOR: Dynamic Channel-Wise Outlier Removal to De-Noise LiDAR Data Corrupted by Snow
    ICIP 2023
    [paper]

  • GAN Inversion Based Point Clouds Denoising in Foggy Scenarios for Autonomous Driving
    ICDL 2023
    [paper]

2024

  • Denoising Point Clouds with Intensity and Spatial Features in Rainy Weather
    TITS 2024
    [paper]

  • RGB-LiDAR sensor fusion for dust de-filtering in autonomous excavation applications
    Automation in Construction 2024
    [paper]

  • TripleMixer: A 3D Point Cloud Denoising Model for Adverse Weather
    Arxiv 2024
    [paper] [code]

  • An improved point cloud denoising method in adverse weather conditions based on PP-LiteSeg network
    PeerJ Computer Science 2024
    [paper]

  • Denoising Framework Based on Multiframe Continuous Point Clouds for Autonomous Driving LiDAR in Snowy Weather
    Sensors 2024
    [paper] [code]

  • Dust De-Filtering in LiDAR Applications With Conventional and CNN Filtering Methods
    Sensors 2024
    [paper]

  • AdWeatherNet: Adverse Weather Denoising with Point Cloud Spatiotemporal Attention
    VCIP 2024
    [paper] [code]

  • 3D-UnOutDet: A Fast and Efficient Unsupervised Snow Removal Algorithm for 3D LiDAR Point Clouds
    Authorea Preprints 2024
    [paper] [code]

2025

  • Semantic Segmentation Based Rain and Fog Filtering Only by LiDAR Point Clouds
    Sensors. 2025
    [paper]

LiDAR-based/with Camera Detector🔝

2020

  • 1st Place Solution for Waymo Open Dataset Challenge - 3D Detection and Domain Adaptation
    Arxiv 2020
    [paper]

2021

  • SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation
    CVPR 2021
    [paper]

2022

  • Rethinking LiDAR Object Detection in adverse weather conditions
    ICRA 2022
    [paper]

  • Towards Robust 3D Object Detection In Rainy Conditions ITSC 2022
    [paper] [code]

  • LossDistillNet: 3D Object Detection in Point Cloud Under Harsh Weather Conditions
    Access 2022
    [paper]

  • Robust 3D Object Detection in Cold Weather Conditions
    IV 2022
    [paper]

  • Robust-FusionNet: Deep Multimodal Sensor Fusion for 3-D Object Detection Under Severe Weather Conditions
    TIM 2022
    [paper]

2023

  • A Point Cloud-based 3D Object Detection Method for Winter Weather
    ISCER 2023
    [paper]

  • Source-free Unsupervised Domain Adaptation for 3D Object Detection in Adverse Weather
    ICRA 2023
    [paper] [code]

  • Enhancing Lidar-based Object Detection in Adverse Weather using Offset Sequences in Time
    ICECET 2023
    [paper]

2024

  • Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather
    Transportation research part C: emerging technologies 2024
    [paper]

  • Sunshine to Rainstorm: Cross-Weather Knowledge Distillation for Robust 3D Object Detection
    AAAI 2024
    [paper] [code]

  • SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather
    ECCV 2024
    [paper] [code]

  • LiDAR Point Cloud Augmentation for Adverse Conditions Using Conditional Generative Model
    Remote Sensing 2024
    [paper]

2025

  • AWARDistill: Adaptive and robust 3D object detection in adverse conditions through knowledge distillation,Expert Systems with Applications
    2025
    [paper]

  • 3D vision object detection for autonomous driving in fog using LiDaR
    Simulation Modelling Practice and Theory 2025
    [paper]


4D Radar-based/with Camera Detector 🔝

2022

  • [RTNH]: K-radar: 4d radar object detection for autonomous driving in various weather conditions
    NIPS 2022
    [paper] [code&data]

2024

  • TL-4DRCF: A Two-Level 4-D Radar–Camera Fusion Method for Object Detection in Adverse Weather
    Sensors 2024
    [paper]

LiDAR+3D Radar Fusion Detector🔝

2020

  • Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
    CVPR 2020
    [paper] [code]

2021

  • Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals
    CVPR 2021
    [paper] [code]

2022

  • Modality-Agnostic Learning for Radar-Lidar Fusion in Vehicle Detection
    CVPR 2022
    [paper]

2023

  • ST-MVDNET++: IMPROVE VEHICLE DETECTION WITH LIDAR-RADAR GEOMETRICAL AUGMENTATION VIA SELF-TRAINING
    ICASSP 2023
    [paper] [code]

  • Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object Detection
    CVPR 2023
    [paper]

2024

  • 3D Object Detection Algorithm in Adverse Weather Conditions Based on LiDAR-Radar Fusion
    CCC 2024
    [paper]

  • RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object Detection Systems
    TCSVT 2024
    [paper] [code]

  • SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather
    ECCV 2024
    [paper] [code]

  • TransFusion: Multi-Modal Robust Fusion for 3D Object Detection in Foggy Weather Based on Spatial Vision Transformer
    TITS 2024
    [paper]


LiDAR+4D Radar Fusion Detector🔝

2024

  • Towards Robust 3D Object Detection with LiDAR and 4D Radar Fusion in Various Weather Conditions
    CVPR 2024
    [paper] [code]

  • LiDAR-based All-weather 3D Object Detection via Prompting and Distilling 4D Radar
    ECCV 2024
    [paper] [code]

2025

  • L4DR: LiDAR-4DRadar Fusion for Weather-Robust 3D Object Detection
    AAAI 2025
    [paper] [code]

with Cooperative Perception 🔝

2024

  • V2X-DGW: Domain Generalization for Multi-agent Perception under Adverse Weather Conditions
    Arxiv 2024
    [paper]

  • Weather-Aware Collaborative Perception With Uncertainty Reduction has been published
    TITS 2024
    [paper] [data]

2025

  • V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion
    CVPR 2025
    [paper] [code]

相关文章:

恶劣天候三维目标检测论文列表整理

恶劣天候三维目标检测论文列表 图摘自Kradar 🏠 介绍 Hi,这是有关恶劣天气下三维目标检测的论文列表。主要是来源于近3年研究过程中认为有意义的文章。希望能为新入门的研究者提供一些帮助。 可能比较简陋,存在一定的遗漏,欢迎…...

conda的环境起的jupyter用不了已经安装的包如何解决

当你在使用Conda环境中的Jupyter Notebook时遇到无法读取某些库或模块的问题,通常是由以下几个原因引起的: 环境未激活:确保你已经在正确的Conda环境中激活了Jupyter Notebook。 库未安装:可能你需要的库没有在当前的Conda环境中…...

蓝桥杯题型

蓝桥杯题型分类 二分 123 传送门 1. 小区间的构成 假设数列的构成是如下形式: 第 1 个区间包含 1 个元素(1)。第 2 个区间包含 2 个元素(1 2)。第 3 个区间包含 3 个元素(1 2 3)。第 4 个区…...

STM32-I2C通信协议

一:I2C通信协议 就是在串口通信上满足四个要求 要求1:删掉一根通信线,防止资源浪费,只能在同一根线上进行发送和接收要求2:需要一个应答机制,没发送一个字节都有一次应答要求3:一根线上能同时…...

taosd 写入与查询场景下压缩解压及加密解密的 CPU 占用分析

在当今大数据时代,时序数据库的应用越来越广泛,尤其是在物联网、工业监控、金融分析等领域。TDengine 作为一款高性能的时序数据库,凭借独特的存储架构和高效的压缩算法,在存储和查询效率上表现出色。然而,随着数据规模…...

uniapp微信小程序vue3自定义tabbar

在App.vue隐藏原生tabbar&#xff0c;也可以在pages.json中配置 二选一就好了 创建 CustomTabBar 公共组件 <template><view class"custom-tab-bar" :style"{paddingBottom: safeAreaHeight px}"><view class"tab-bar-item" :…...

BUUCTF——[GYCTF2020]FlaskApp1 SSTI模板注入/PIN学习

目录 一、网页功能探索 二、SSTI注入 三、方法一 四、方法二 使用PIN码 &#xff08;1&#xff09;服务器运行flask登录所需的用户名 &#xff08;2&#xff09;modename &#xff08;3&#xff09;flask库下app.py的绝对路径 &#xff08;4&#xff09;当前网络的mac地…...

如何用Kimi生成PPT?秒出PPT更高效!

做PPT是不是总是让你头疼&#xff1f;&#x1f629; 快速制作出专业的PPT&#xff0c;今天我们要推荐两款超级好用的AI工具——Kimi 和 秒出PPT&#xff01;我们来看看哪一款更适合你吧&#xff01;&#x1f680; &#x1f947; Kimi&#xff1a;让PPT制作更轻松 Kimi的生成效…...

数据结构(回顾)

数据结构&#xff08;回顾&#xff09; 回顾 不同点顺序表链表存储空间上物理上一定连续逻辑上连续&#xff0c;物理上不一定连续随机访问支持&#xff0c;时间复杂度O(1)不支持&#xff0c;时间复杂度O(N)任意位置插入或者删除元素可能需要挪动元素&#xff0c;效率低&#…...

全国产!瑞芯微3562Mini(2GHz四核A53 NPU)工业开发板规格书

评估板简介 创龙科技 TL3562-MiniEVM 是一款基于瑞芯微 RK3562J/RK3562 处理器设计的四核 AR M Cortex-A53 单核 ARM Cortex-M0 国产工业评估板&#xff0c;主频高达 2.0GHz。评估板由核心板和评估底板组成&#xff0c;核心板 CPU、ROM、RAM、电源、晶振等所有元器件均采用国…...

鸿蒙HarmonyOS评论功能小demo

评论页面小demo 效果展示 1.拆解组件&#xff0c;分层搭建 我们将整个评论页面拆解为三个组件&#xff0c;分别是头部导航&#xff0c;评论项&#xff0c;回复三个部分&#xff0c;然后统一在index界面导入 2.头部导航界面搭建 Preview Component struct HmNavBar {// 属性&a…...

异常(6)

今天我们继续来讲异常的内容,关于异常的捕获和声明,也是在处理异常的的重要方式,话不多说,来看. 异常的捕获 异常的捕获,也就是异常,的具体处理方式,主要有两种,主要有两种&#xff1a;异常声明throws以及try-catch捕获处理. 3.1异常声明throws. 处在方法声明时参数列表之后…...

精选一百道备赛蓝桥杯——2.K倍区间

解题思路 任何两个前缀区间的和对k取模的值相等&#xff0c;则由大的前缀区间减掉小的前缀区间所形成的区间的必定是K倍区间。因此我们可以对具有区间和%k值相等任何两个区间进行组合&#xff0c;再将这些值加起来就得到结果&#xff01;证明&#xff1a; 假设一个数列为a1,a2…...

编译Telegram Desktop

目录 一、前言 二、环境准备 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 三、编译 四、总结和学习 一、前言 Telegram 是一款全球广泛使用的即时通讯软件&#xff0c;以其强大的隐私保护、跨平台同步和丰富的功能而闻名。它支持一对一聊天、群组&#xff08;最多20万成员&am…...

玩转python: 掌握Python数据结构之链表

链表是计算机科学中最基础的数据结构之一&#xff0c;也是许多高级数据结构和算法的基础。本文将带你从零开始&#xff0c;逐步掌握链表的概念、实现和应用。通过丰富的案例和通俗易懂的解释&#xff0c;你将能够轻松理解并应用链表。 什么是链表&#xff1f; 链表是一种线性…...

upload-labs详解(1-12)文件上传分析

目录 uploa-labs-main upload-labs-main第一关 前端防御 绕过前端防御 禁用js Burpsuite抓包改包 upload-labs-main第二关 上传测试 错误类型 upload-labs-env upload-labs-env第三关 上传测试 查看源码 解决方法 重命名&#xff0c;上传 upload-labs-env第四关…...

RAG系统(检索增强生成)的优化策略

RAG(检索增强生成)系统的优化可以从多个方面入手,主要包括数据、查询、检索、生成、框架和评估等几个重要环节。本文将详细介绍这些优化策略,并为每个环节提供具体的操作方法。 一、数据优化 1. 数据清洗和增强 数据质量直接影响检索和生成的效果,因此需要进行细致的数据…...

写毕业论文用哪个AI好?这6款AIGC论文工具给你答案

撰写毕业论文是一项艰巨的任务&#xff0c;AIGC 论文工具的出现为同学们提供了有力支持。以下 6 款工具在功能、适用场景等方面各有优势&#xff0c;助你高效完成毕业论文。 文赋 AI 论文 文赋 AI 论文堪称毕业论文写作的得力助手。它的生成速度令人惊叹&#xff0c;短短 5 分…...

loadingcache优化

问题分析 通过当前现场的火焰图进行分析 原本的loadingcache public LoadingCache<Integer, Student> map Caffeine.newBuilder().refreshAfterWrite(CONTRACT_CACHE_HOURS, TimeUnit.HOURS).maximumSize(CONTRACT_CONFIG_CACHE_SIZE).recordStats().build(key -> …...

【Vue3 Element UI - Plus + Tyscript 实现Tags标签输入及回显】

Vue3 Element Plus TypeScript 实现 Tags 标签输入及回显 在开发后台管理系统或表单页面时&#xff0c;动态标签&#xff08;Tags&#xff09; 是一个常见的功能需求。用户可以通过输入框添加标签&#xff0c;并通过关闭按钮删除标签&#xff0c;同时还需要支持标签数据的提…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...