Android AudioFlinger(四)—— 揭开PlaybackThread面纱
前言:
继上一篇Android AudioFlinger(三)—— AndroidAudio Flinger 之设备管理我们知道PlaybackThread继承自Re’fBase, 在被第一次引用的时候就会调用onFirstRef,实现如下:
void AudioFlinger::PlaybackThread::onFirstRef()
{run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
}
很简单就调用了一个run方法去开起了一个ThreadLoop线程:
bool AudioFlinger::PlaybackThread::threadLoop()
{
...
}
接下来我们进一步研究下PlaybackThread的循环主题具体做了什么?
揭开PlaybackThread面纱
当进入到threadloop就说明playbackthread的音频事务正式开启了。代码比较多,但是我们如果仔细看的话会发现关键代码就几处,而且都是threadLoop_前缀的,threadLoop_standby\threadLoop_mix\threadLoop_sleepTime\threadLoop_write等,这也代表这些函数都是threadLoop内部调用的。
bool AudioFlinger::PlaybackThread::threadLoop()
{
...while (!exitPending()){...{ // scope for mLock//这个地方框起来主要就是限制自动锁_l的生命周期,Mutex::Autolock _l(mLock);//处理config事件processConfigEvents_l(); if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||isSuspended()) {if (shouldStandby_l()) {//进入standby状态节省能耗threadLoop_standby();}}//准备音频流mMixerStatus = prepareTracks_l(&tracksToRemove);} // mLock scope ends...if (mBytesRemaining == 0) {mCurrentWriteLength = 0;if (mMixerStatus == MIXER_TRACKS_READY) {//读取所有active设备数据,混音器开始混音threadLoop_mix();} else if ((mMixerStatus != MIXER_DRAIN_TRACK)&& (mMixerStatus != MIXER_DRAIN_ALL)) {//进入休眠threadLoop_sleepTime();}}...if (!waitingAsyncCallback()) {if (mSleepTimeUs == 0) {if (mBytesRemaining) {//把混音器处理好的数据写入到输出流设备ret = threadLoop_write();} else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||(mMixerStatus == MIXER_DRAIN_ALL)) {threadLoop_drain();}...}}
... //移除相关的trackthreadLoop_removeTracks(tracksToRemove);tracksToRemove.clear();clearOutputTracks();effectChains.clear();}threadLoop_exit();if (!mStandby) {threadLoop_standby();mStandby = true;}releaseWakeLock();return false;
}
首先exitPending是threadloop循环的条件,这个函数是Thread的内部函数,它主要就是通过判断mExitPending来决定是否退出线程,这个值默认为false,在收到requestExit或者requestExitAndWait的时候会变为true,然后就会退出循环。
Thread PATH:/system/core/libutils/Threads.cpp
processConfigEvents_l: 处理config时间,当有配置发声变化的时候会调用sendConfigEvent_l来把事件添加到mConfigEvents中,最终processConfigEvents_l检测到就会去处理对应的配置。
threadLoop_standby: 判断当前是否符合standby条件,符合就调用threadLoop_standby,最终的实现其实是hal层实现,会做出关闭音频流等操作。
prepareTracks_l: 这个函数非常复杂,我们简单概括下,挑几个重点谈一谈
// prepareTracks_l() must be called with ThreadBase::mLock held
AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(Vector< sp<Track> > *tracksToRemove)
{//获取当前活跃的track数量size_t count = mActiveTracks.size();for (size_t i=0 ; i<count ; i++) {//循环每个活跃的trackconst sp<Track> t = mActiveTracks[i];// this const just means the local variable doesn't changeTrack* const track = t.get();// process fast tracksif (track->isFastTrack()) {//如果是fasttrack改如何处理}
...{ // local variable scope to avoid goto warning//数据块准备操作audio_track_cblk_t* cblk = track->cblk();//获取track的音频信息const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();desiredFrames = sourceFramesNeededWithTimestretch(sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());uint32_t minFrames = 1;if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&(mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {//至少需要准备的音频帧数minFrames = desiredFrames;}size_t framesReady = track->framesReady();if ((framesReady >= minFrames) && track->isReady() &&!track->isPaused() && !track->isTerminated()){mixedTracks++;// compute volume for this trackuint32_t vl, vr; // in U8.24 integer formatfloat vlf, vrf, vaf; // in [0.0, 1.0] float format//左声道,右声道,aux level音量// read original volumes with volume controlfloat typeVolume = mStreamTypes[track->streamType()].volume;//获取每个stream类型的音频音量float v = masterVolume * typeVolume;//主音量和类型音量相乘if (track->isPausing() || mStreamTypes[track->streamType()].mute) {vl = vr = 0;vlf = vrf = vaf = 0.;//设置0,代表静音操作if (track->isPausing()) {track->setPaused();//track设置暂停}} else {sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;gain_minifloat_packed_t vlr = proxy->getVolumeLR();//得到音量的增益值vlf = float_from_gain(gain_minifloat_unpack_left(vlr));vrf = float_from_gain(gain_minifloat_unpack_right(vlr));//转换为浮点值// track volumes come from shared memory, so can't be trusted and must be clamped//判断是否在合理范围内if (vlf > GAIN_FLOAT_UNITY) {ALOGV("Track left volume out of range: %.3g", vlf);vlf = GAIN_FLOAT_UNITY;}if (vrf > GAIN_FLOAT_UNITY) {ALOGV("Track right volume out of range: %.3g", vrf);vrf = GAIN_FLOAT_UNITY;}const float vh = track->getVolumeHandler()->getVolume(track->mAudioTrackServerProxy->framesReleased()).first;// now apply the master volume and stream type volume and shaper volumevlf *= v * vh;vrf *= v * vh;// assuming master volume and stream type volume each go up to 1.0,// then derive vl and vr as U8.24 versions for the effect chainconst float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;vl = (uint32_t) (scaleto8_24 * vlf);vr = (uint32_t) (scaleto8_24 * vrf);// vl and vr are now in U8.24 formatuint16_t sendLevel = proxy->getSendLevel_U4_12();// send level comes from shared memory and so may be corruptif (sendLevel > MAX_GAIN_INT) {ALOGV("Track send level out of range: %04X", sendLevel);sendLevel = MAX_GAIN_INT;}// vaf is represented as [0.0, 1.0] float by rescaling sendLevelvaf = v * sendLevel * (1. / MAX_GAIN_INT);}track->setFinalVolume((vrf + vlf) / 2.f);// XXX: these things DON'T need to be done each timemAudioMixer->setBufferProvider(name, track);mAudioMixer->enable(name);mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);...} else {...}} // local variable scope to avoid goto warning}return mixerStatus;
}
mActiveTracks记录了当前处于活跃状态的track,接着就是循环遍历每一个track进行处理,获取对应的音频参数。
audio_track_cblk_t是音频数据块,后面我们会扩展讲解。
在之后minFrames代表了此次音频播放所需要的最小帧数,他的初始值为1。当track->sharedBuffer() == 0的时候,说明这个AudioTrack不是STATIC模式(数据不是一次性传送完成的)。
getUnreleasedFrames用来获取音频缓冲区中尚未被音频硬件处理的帧数。
当我们计算出minFrames之后,就开始判断当前音频的各种指标是否符合标准。
vlf, vrf, vaf分别表示,左声道音量,右声道音量,AUX level音量,浮点数表示。
根据streamType获取对应stream类型音频的音量,然后进行判断是否在合理范围内,最终经过计算设置到AudioMixer对象中。当准备工作完成后,就进入到了真正的混音操作中了。
threadloop_mix:主要就是调用AudioMixer的process函数进行处理,这样就进入了audiomixer。
void AudioFlinger::MixerThread::threadLoop_mix()
{// 启动混音mAudioMixer->process();mCurrentWriteLength = mSinkBufferSize;//当应用程序欠载情况清除时,逐步增加睡眠时间。//仅当混频器连续两次准备就绪时才增加睡眠时间,//以避免交替的就绪/未就绪条件的稳定状态保持睡眠时间,从而导致音频 HAL 欠载。if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {sleepTimeShift--;}mSleepTimeUs = 0;mStandbyTimeNs = systemTime() + mStandbyDelayNs;//TODO: delay standby when effects have a tail}
最后就是将数据写入HAL层了,threadloop_write。
当mNormalSink存在的时候调用他的write函数写入,不存在就调用mOutput的write函数,mOutput就是 AudioStreamOut。
ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
{ssize_t bytesWritten;// If an NBAIO sink is present, use it to write the normal mixer's submixif (mNormalSink != 0) {ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);ATRACE_END();if (framesWritten > 0) {bytesWritten = framesWritten * mFrameSize;} else {bytesWritten = framesWritten;}// otherwise use the HAL / AudioStreamOut directly} else {bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);}return bytesWritten;
}
写入完成后调用各种清理的函数,remove,clear等。
// Finally let go of removed track(s), without the lock held
// since we can't guarantee the destructors won't acquire that
// same lock. This will also mutate and push a new fast mixer state.
threadLoop_removeTracks(tracksToRemove);
tracksToRemove.clear();// FIXME I don't understand the need for this here;
// it was in the original code but maybe the
// assignment in saveOutputTracks() makes this unnecessary?
clearOutputTracks();// Effect chains will be actually deleted here if they were removed from
// mEffectChains list during mixing or effects processing
effectChains.clear();
void AudioFlinger::PlaybackThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
{size_t count = tracksToRemove.size();if (count > 0) {for (size_t i = 0 ; i < count ; i++) {const sp<Track>& track = tracksToRemove.itemAt(i);if (track->isExternalTrack()) {AudioSystem::stopOutput(mId, track->streamType(),track->sessionId());if (track->isTerminated()) {AudioSystem::releaseOutput(mId, track->streamType(),track->sessionId());}}}}
}
相关文章:
Android AudioFlinger(四)—— 揭开PlaybackThread面纱
前言: 继上一篇Android AudioFlinger(三)—— AndroidAudio Flinger 之设备管理我们知道PlaybackThread继承自Re’fBase, 在被第一次引用的时候就会调用onFirstRef,实现如下: void AudioFlinger::Playbac…...
C语言基础系列【20】内存管理
博主介绍:程序喵大人 35- 资深C/C/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C20高级编程》《C23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末👇…...
JavaScript基础-递增和递减运算符
在JavaScript编程中,递增()和递减(--)运算符是用于对数值进行加一或减一操作的基础工具。它们简洁且强大,但如果不正确地使用,可能会导致混淆或错误。本文将详细介绍这两种运算符的不同形式及其…...
计算机毕业设计SpringBoot+Vue.js社区医疗综合服务平台(源码+文档+PPT+讲解)
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
3.6c语言
#define _CRT_SECURE_NO_WARNINGS #include <math.h> #include <stdio.h> int main() {int sum 0,i,j;for (j 1; j < 1000; j){sum 0;for (i 1; i < j; i){if (j % i 0){sum i;} }if (sum j){printf("%d是完数\n", j);}}return 0; }#de…...
Unity开发——CanvasGroup组件介绍和应用
CanvasGroup是Unity中用于控制UI的透明度、交互性和渲染顺序的组件。 一、常用属性的解释 1、alpha:控制UI的透明度 类型:float,0.0 ~1.0, 其中 0.0 完全透明,1.0 完全不透明。 通过调整alpha值可以实现UI的淡入淡…...
深度学习驱动的跨行业智能化革命:技术突破与实践创新
第一章 深度学习的技术范式演进与核心架构 1.1 从传统机器学习到深度神经网络的跨越 深度学习的核心在于通过多层次非线性变换自动提取数据特征,其发展历程可划分为三个阶段:符号主义时代的规则驱动(1950s-1980s)、连接主义时代的浅层网络(1990s-2000s)以及深度学习时代…...
php配置虚拟主机
在PHP中配置虚拟主机,通常是通过Apache或Nginx等Web服务器来进行设置的。下面我将分别介绍如何在Apache和Nginx中配置PHP虚拟主机。 1. Apache 配置虚拟主机 Apache是最常用的Web服务器之一,配置虚拟主机的步骤如下: 步骤一:确保A…...
RESTful API 设计指南
RESTful API 介绍 大佬的总结:RESTful API 设计指南 - 阮一峰的网络日志 json-server github地址 这里介绍一个快速搭建 REST API 服务的工具包 接口测试工具 介绍几个接口测试工具 apipost apifox postman https://www.apipost.cn/ (中文) https://www.apifox…...
在虚拟机上安装Hadoop
以下是在虚拟机上安装Hadoop的一般步骤: 准备工作 - 安装虚拟机软件:如VMware Workstation或VirtualBox等。 - 创建虚拟机:选择合适的操作系统镜像,如Ubuntu或CentOS等Linux发行版,为虚拟机分配足够的CPU、内存和磁盘…...
大白话JavaScript实现一个函数,将字符串中的每个单词首字母大写。
大白话JavaScript实现一个函数,将字符串中的每个单词首字母大写。 答题思路 理解需求:要写一个函数,它能接收一个字符串,然后把这个字符串里每个单词的第一个字母变成大写。分解步骤 拆分单词:一般单词之间是用空格隔…...
【VUE2】第三期——样式冲突、组件通信、异步更新
目录 1 scoped解决样式冲突 2 data写法 3 组件通信 3.1 父子关系 3.1.1 父向子传值 props 3.1.2 子向父传值 $emit 3.2 非父子关系 3.2.1 event bus 事件总线 3.2.2 跨层级共享数据 provide&inject 4 props 4.1 介绍 4.2 props校验完整写法 5 v-model原理 …...
深度学习代码解读——自用
代码来自:GitHub - ChuHan89/WSSS-Tissue 借助了一些人工智能 2_generate_PM.py 功能总结 该代码用于 生成弱监督语义分割(WSSS)所需的伪掩码(Pseudo-Masks),是 Stage2 训练的前置步骤。其核心流程为&a…...
Linux 配置静态 IP
一、简介 在 Linux CentOS 系统中默认动态分配 IP 地址,每次启动虚拟机服务都是不一样的 IP,因此要配置静态 IP 地址避免每次都发生变化,下面将介绍配置静态 IP 的详细步骤。 首先先理解一下动态 IP 和静态 IP 的概念: 动态 IP…...
Oxidized收集H3C交换机网络配置报错,not matching configured prompt (?-mix:^(<CD>)$)
背景:问题如上标题,H3C所有交换机配置的model都是comware 解决方案: 1、找到compare.rb [rootoxidized model]# pwd /usr/local/lib/ruby/gems/3.1.0/gems/oxidized-0.29.1/lib/oxidized/model [rootoxidized model]# ll comware.rb -rw-r--…...
RAG技术深度解析:从基础Agent到复杂推理Deep Search的架构实践
重磅推荐专栏: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经…...
6.过拟合处理:确保模型泛化能力的实践指南——大模型开发深度学习理论基础
在深度学习开发中,过拟合是一个常见且具有挑战性的问题。当模型在训练集上表现优秀,但在测试集或新数据上性能大幅下降时,就说明模型“记住”了训练数据中的噪声而非学习到泛化规律。本文将从实际开发角度系统讲解如何应对过拟合,…...
【玩转23种Java设计模式】结构型模式篇:组合模式
软件设计模式(Design pattern),又称设计模式,是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性、程序的重用性。 汇总目录链接&…...
专业工具,提供多种磁盘分区方案
随着时间的推移,电脑的磁盘空间往往会越来越紧张,许多人都经历过磁盘空间不足的困扰。虽然通过清理垃圾文件可以获得一定的改善,但随着文件和软件的增多,磁盘空间仍然可能显得捉襟见肘。在这种情况下,将其他磁盘的闲置…...
SELinux 概述
SELinux 概述 概念 SELinux(Security-Enhanced Linux)是美国国家安全局在 Linux 开源社区的帮助下开发的一个强制访问控制(MAC,Mandatory Access Control)的安全子系统。它确保服务进程仅能访问它们应有的资源。 例…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...
