模型的原始输出为什么叫 logits
模型的原始输出为什么叫 logits
flyfish
一、Logarithm(对数 log)
定义:对数是指数运算的逆运算,表示某个数在某个底数下的指数。
公式:若 b x = a b^x = a bx=a,则 log b ( a ) = x \log_b(a) = x logb(a)=x。
二、Odds(几率)与 Logit
1. Odds(几率)
- 定义:事件发生概率 p p p 与不发生概率 1 − p 1-p 1−p 的比值。
- 公式: Odds = p 1 − p \text{Odds} = \frac{p}{1-p} Odds=1−pp。
- 意义:例如,概率 p = 0.75 p=0.75 p=0.75 对应 Odds 3 : 1 3:1 3:1(成功比失败多 3 倍)。
2. Logit(对数几率)
- 定义:Odds 的自然对数。
- 公式: logit ( p ) = log ( p 1 − p ) \text{logit}(p) = \log\left(\frac{p}{1-p}\right) logit(p)=log(1−pp)。
- 作用:将概率 p ∈ ( 0 , 1 ) p \in (0,1) p∈(0,1) 转换为实数范围 ( − ∞ , + ∞ ) (-\infty, +\infty) (−∞,+∞),便于线性模型处理。
**三、Logistic **
1. Logistic 分布
- 定义:一种连续概率分布,形状类似正态分布,但尾部更厚。
- 概率密度函数:
f ( x ) = e − x ( 1 + e − x ) 2 f(x) = \frac{e^{-x}}{(1 + e^{-x})^2} f(x)=(1+e−x)2e−x
2. Logistic Function(逻辑函数)
- 定义:Logistic 分布的累积分布函数(CDF),即 sigmoid 函数。
- 公式:
σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+e−z1 - 特性:
- S 型曲线,输入 z ∈ R z \in \mathbb{R} z∈R,输出 σ ( z ) ∈ ( 0 , 1 ) \sigma(z) \in (0,1) σ(z)∈(0,1)。
- 导数形式简单: σ ′ ( z ) = σ ( z ) ( 1 − σ ( z ) ) \sigma'(z) = \sigma(z)(1 - \sigma(z)) σ′(z)=σ(z)(1−σ(z)),便于梯度计算。
3. Logistic Regression(逻辑回归)
- 任务:二分类问题。
- 模型:
logit ( p ) = w T x + b ⇒ p = σ ( w T x + b ) \text{logit}(p) = \mathbf{w}^T \mathbf{x} + b \quad \Rightarrow \quad p = \sigma(\mathbf{w}^T \mathbf{x} + b) logit(p)=wTx+b⇒p=σ(wTx+b) - 损失函数:交叉熵损失。
四、Sigmoid vs. Softmax
| 术语 | 应用场景 | 公式 | 输出范围 | 作用 |
|---|---|---|---|---|
| Sigmoid | 二分类 | σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1+e^{-z}} σ(z)=1+e−z1 | ( 0 , 1 ) (0,1) (0,1) | 将单个 logit 转换为概率 |
| Softmax | 多分类 | softmax ( z i ) = e z i ∑ j e z j \text{softmax}(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}} softmax(zi)=∑jezjezi | ( 0 , 1 ) (0,1) (0,1) 且总和为 1 | 将多个 logits 转换为概率分布 |
五、Logits 的演变
1. 二分类中的 Logit
- 定义:逻辑回归中线性模型的输出 w T x + b \mathbf{w}^T \mathbf{x} + b wTx+b,即 logit ( p ) \text{logit}(p) logit(p)。
- 与概率的关系:通过 sigmoid 转换为概率。
2. 多分类中的 Logits
- 定义:多分类模型(如神经网络)的原始输出 z 1 , z 2 , . . . , z K z_1, z_2, ..., z_K z1,z2,...,zK。
- 特点:
- 未归一化(数值任意)。
- 通过 softmax 转换为概率分布。
- 术语沿用原因:
- 继承逻辑回归的 logit 概念,表示“概率的前兆”。
- 强调与概率的非线性转换关系。
六、对比
| 术语 | 数学形式 | 应用场景 | 作用 |
|---|---|---|---|
| Logarithm | log b ( a ) \log_b(a) logb(a) | 数学、科学计算 | 简化运算、压缩数值范围 |
| Odds | p 1 − p \frac{p}{1-p} 1−pp | 概率与统计 | 表示事件发生的相对可能性 |
| Logit | log ( p 1 − p ) \log\left(\frac{p}{1-p}\right) log(1−pp) | 逻辑回归、二分类 | 将概率转换为线性模型可处理的实数 |
| Logistic Function | 1 1 + e − z \frac{1}{1+e^{-z}} 1+e−z1 | 二分类、激活函数 | 将实数转换为概率 |
| Logistic Regression | p = σ ( w T x + b ) p = \sigma(\mathbf{w}^T \mathbf{x} + b) p=σ(wTx+b) | 二分类任务 | 建立特征与二分类标签的概率关系 |
| Softmax | e z i ∑ j e z j \frac{e^{z_i}}{\sum_j e^{z_j}} ∑jezjezi | 多分类、激活函数 | 将多个 logits 转换为概率分布 |
| Logits | z 1 , z 2 , . . . , z K z_1, z_2, ..., z_K z1,z2,...,zK | 模型输出 | 原始未归一化的分数,需通过激活函数处理 |
在AI中的 logits 单词的含义扩展为模型原始输出,无论是否为对数几率。
相关文章:
模型的原始输出为什么叫 logits
模型的原始输出为什么叫 logits flyfish 一、Logarithm(对数 log) 定义:对数是指数运算的逆运算,表示某个数在某个底数下的指数。 公式:若 b x a b^x a bxa,则 log b ( a ) x \log_b(a) x logb…...
[SAP MM] 查看物料主数据的物料类型
创建物料主数据时,必须为物料分配物料类型,如原材料或半成品 在标准系统中,物料类型ROH(原材料)的所有物料都要从外部采购,而类型为NLAG(非库存物料)的物料则可从外部采购也可在内部生产 ① 特殊物料类型:NLAG 该物料…...
风控模型算法面试题集结
特征处理 1. 特征工程的一般步骤什么?什么是特征迭代 特征工程一般包含: 数据获取,分析数据的可用性(覆盖率,准确率,获取容易程度)数据探索,分析数据业务含义,对特征有一个大致了解,同时进行数据质量校验,包含缺失值、异常值和一致性等;特征处理,包含数据处理和…...
PX4中的DroneCAN的实现库Libuavcan及基础功能示例
简介 Libuavcan是一个用C编写的可移植的跨平台库,对C标准库的依赖小。它可以由几乎任何符合标准的C编译器编译,并且可以在几乎任何体系结构/OS上使用。 在 DroneCAN 中,Libuavcan 有一个 DSDL 编译器,将 DSDL 文件转换为 hpp 头…...
Hot 3D 人体姿态估计 HPE Demo复现过程
视频讲解 Hot 3D 人体姿态估计 HPE Demo复现过程 标题:Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation论文地址:https://arxiv.org/abs/2311.12028代码地址:https://github.com/NationalGAILab/HoT 使用con…...
Linux操作系统6- 线程1(线程基础,调用接口,线程优缺点)
上篇文章:Linux操作系统5- 补充知识(可重入函数,volatile关键字,SIGCHLD信号)-CSDN博客 本篇Gitee仓库:myLerningCode/l27 橘子真甜/Linux操作系统与网络编程学习 - 码云 - 开源中国 (gitee.com) 目录 一.…...
每周一个网络安全相关工具——MetaSpLoit
一、Metasploit简介 Metasploit(MSF)是一款开源渗透测试框架,集成了漏洞利用、Payload生成、后渗透模块等功能,支持多种操作系统和硬件平台。其模块化设计(如exploits、auxiliary、payloads等)使其成为全球…...
MAC-禁止百度网盘自动升级更新
通过终端禁用更新服务(推荐) 此方法直接移除百度网盘的自动更新组件,无需修改系统文件。 步骤: 1.关闭百度网盘后台进程 按下 Command + Space → 输入「活动监视器」→ 搜索 BaiduNetdisk 或 UpdateAgent → 结束相关进程。 2.删除自动更新配置文件 打开终端…...
【C语言】自定义类型:结构体,联合,枚举(上)
前言:在C语言中除了我们经常使用的数据(int,float,double类型)等这些类型以外,还有一种类型就是自定义类型,它包括结构体,联合体,枚举类型。为什么要有这种自定义类型呢?假设我们想描…...
SQLiteStudio:一款免费跨平台的SQLite管理工具
SQLiteStudio 是一款专门用于管理和操作 SQLite 数据库的免费工具。它提供直观的图形化界面,简化了数据库的创建、编辑、查询和维护,适合数据库开发者和数据分析师使用。 功能特性 SQLiteStudio 提供的主要功能包括: 免费开源,可…...
Mysql配置文件My.cnf(my.ini)配置参数说明
一、my.cnf 配置文件路径:/etc/my.cnf,在调整了该文件内容后,需要重启mysql才可生效。 1、主要参数 basedir path # 使用给定目录作为根目录(安装目录)。 datadir path # 从给定目录读取数据库文件。 pid-file filename # 为mysq…...
聊天模型集成指南
文章目录 聊天模型集成指南Anthropic聊天模型集成PaLM2聊天模型PaLM2API的核心功能OpenAl聊天模型集成聊天模型集成指南 随着GPT-4等大语言模型的突破,聊天机器人已经不仅仅是简单的问答工具,它们现在广泛应用于客服、企业咨询、电子商务等多种场景,为用户提供准确、快速的反…...
搭建农产品管理可视化,助力农业智能化
利用图扑 HT 搭建农产品管理可视化平台,实现从生产到销售的全流程监控。平台通过物联网传感器实时采集土壤湿度、温度、光照等数据,支持智慧大棚的灌溉、施肥、病虫害防治等功能。同时,农产品调度中心大屏可展示市场交易数据、库存状态、物流…...
tee命令
tee 是一个在 Unix/Linux 系统中常用的命令,它用于读取标准输入(stdin),并将其内容同时输出到标准输出(stdout)和文件中。它常用于将命令的输出保存到文件的同时,也显示在终端屏幕上。 基本语法…...
国自然面上项目|基于海量多模态影像深度学习的肝癌智能诊断研究|基金申请·25-03-07
小罗碎碎念 今天和大家分享一个国自然面上项目,执行年限为2020.01~2023.12,直接费用为65万元。 该项目旨在利用多模态医学影像,通过深度学习技术,解决肝癌诊断中的难题,如影像的快速配准融合、海量特征筛选…...
「勾芡」和「淋明油」是炒菜收尾阶段提升菜品口感和观感的关键操作
你提到的「勾芡」和「淋明油」是炒菜收尾阶段提升菜品口感和观感的关键操作,背后涉及食品科学中的物理化学变化。以下从原理到实操的深度解析: 一、勾芡:淀粉的“精密控温游戏” 1. 科学原理 淀粉糊化(Gelatinization࿰…...
ROS云课三分钟-差动移动机器人导航报告如何撰写-及格边缘疯狂试探
提示词:基于如上所有案例并结合roslaunch teb_local_planner_tutorials robot_diff_drive_in_stage.launch和上面所有对话内容,设计一个差速移动机器人仿真实验,并完成报告的全文撰写。 差速移动机器人导航仿真实验报告 一、实验目的 验证 T…...
应用案例 | 精准控制,高效运行—宏集智能控制系统助力SCARA机器人极致性能
概述 随着工业4.0的深入推进,制造业对自动化和智能化的需求日益增长。传统生产线面临空间不足、效率低下、灵活性差等问题,尤其在现有工厂改造项目中,如何在有限空间内实现高效自动化成为一大挑战。 此次项目的客户需要在现有工厂基础上进行…...
蓝桥备赛(16)- 树
一、树的概念 1.1 树的定义 1)树型结构(一对多)是⼀类重要的非线性数据结构 2 )有⼀个特殊的结点,称为根结点,根结点没有前驱结点 3)除了根节点外 , 其余结点被分成 M(M…...
黑马测试mysql基础学习
视频来源:软件测试工程师所需的MySQL数据库技术,mysql系统精讲课后练习_哔哩哔哩_bilibili 环境准备: 虚拟机Linux服务器安装mysql数据库。本机安装Navicat。使Navicat连接虚拟机的数据库。(麻烦一点的是Navicat连接虚拟机的数据…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
