Python零基础学习第三天:函数与数据结构
一、函数基础
-
函数是什么? 想象你每天都要重复做同一件事,比如泡咖啡。函数就像你写好的泡咖啡步骤说明书,每次需要时直接按步骤执行,不用重新想流程。
# 定义泡咖啡的函数 def make_coffee(sugar=1): # 默认加1勺糖 print("烧水...") print("放入咖啡粉...") print(f"加{sugar}勺糖") return "一杯咖啡做好了☕" # 调用函数 my_coffee = make_coffee(2) print(my_coffee)
-
函数的参数与返回值
-
参数类型
-
必须参数:调用时必须传递(如make_coffee(2)里的2)
-
默认参数:不传值时使用默认值(如sugar=1)
-
可变参数:接收任意数量参数(*args用于元组,**kwargs用于字典)
def student_info(name, age, *hobbies, **scores): print(f"姓名:{name}, 年龄:{age}") print("爱好:", hobbies) print("成绩:", scores) student_info("小明", 18, "篮球", "编程", 数学=90, 英语=85)
-
返回值
-
用return返回结果,可返回多个值(实际是元组)
-
无return时函数返回None
def calculator(a, b): add = a + b subtract = a - b return add, subtract result = calculator(10, 5) print(result) # 输出 (15, 5)
-
变量的作用域
-
局部变量:函数内部定义的变量(如函数内的add)
-
全局变量:函数外部定义的变量(需用global关键字修改)
count = 0 # 全局变量 def increment(): global count count += 1 print(f"当前计数:{count}") increment() # 输出 1
互动问题:如果去掉global count会报错吗?为什么?
二、常用数据结构
-
列表(List)
-
特点:可修改、有序、元素可重复
-
常用操作:增删改查
shopping_list = ["苹果", "牛奶"] shopping_list.append("面包") # 添加元素 shopping_list[1] = "酸奶" # 修改元素 shopping_list.pop() # 删除最后一个元素 print(shopping_list) # 输出 ['苹果', '酸奶']
-
字典(Dictionary)
-
特点:键值对结构,键不可重复
-
应用场景:存储用户信息、配置参数
user = { "name": "李华", "age": 25, "is_vip": True } print(user["name"]) # 输出 李华 user["email"] = "lihua@example.com" # 添加新键值对
-
元组(Tuple)与集合(Set)
-
元组:不可修改的列表,用圆括号定义
-
集合:自动去重,支持交集、并集操作
# 元组示例 colors = ("红色", "蓝色", "绿色") print(colors[0]) # 输出 红色 # 集合示例 fruit_set = {"苹果", "香蕉", "苹果", "橙子"} print(fruit_set) # 输出 {'苹果', '香蕉', '橙子'}
三、综合案例:学生成绩管理系统
students = [] def add_student(name, score): students.append({"name": name, "score": score}) def show_ranking(): sorted_students = sorted(students, key=lambda x: x["score"], reverse=True) for student in sorted_students: print(f"{student['name']}: {student['score']}分") # 添加学生 add_student("张三", 85) add_student("李四", 92) add_student("王五", 78) # 显示排名 show_ranking()
输出结果:
李四: 92分 张三: 85分 王五: 78分
思考题:如何修改代码实现按姓名排序?
相关文章:

Python零基础学习第三天:函数与数据结构
一、函数基础 函数是什么? 想象你每天都要重复做同一件事,比如泡咖啡。函数就像你写好的泡咖啡步骤说明书,每次需要时直接按步骤执行,不用重新想流程。 # 定义泡咖啡的函数 def make_coffee(sugar1): # 默认加1勺糖 print("…...

启动wsl里的Ubuntu24报错:当前计算机配置不支持 WSL2,HCS_E_HYPERV_NOT_INSTALLED
问题:启动wsl里的Ubuntu24报错 报错信息: 当前计算机配置不支持 WSL2。 请启用“虚拟机平台”可选组件,并确保在 BIOS 中启用虚拟化。 通过运行以下命令启用“虚拟机平台”: wsl.exe --install --no-distribution 有关信息,请访…...

顶点着色器和片段着色器
在Unity渲染中,**顶点着色器(Vertex Shader)和片段着色器(Fragment Shader)**是图形渲染管线中的两个核心阶段。我们可以通过一个比喻来理解它们的分工:想象你要画一幅由三角形组成的3D模型,顶点…...

std::optional详解
基础介绍 c17版本引入了std::optional特性,这一个类模板,基本的使用方法如下: std::optional<T> 这个新特性的含义是利用std::optional<T>创建的某个类型的对象,这个对象存储某个类型的值,这个值可能存在…...

Web三件套学习笔记
<!-- HTML --> HTML是超文本标记语言 1、html常用标签 块级标签 独占一行 可以设置宽度,高度,margin,padding 宽度默认所在容器的宽度 标签作用table定义表格h1 ~ h6定义标题hr定义一条水平线p定义段落li标签定义列表项目ul定义无序列表ol定…...

Scala 中trait的线性化规则(Linearization Rule)和 super 的调用行为
在 Scala 中,特质(Trait)是一种强大的工具,用于实现代码的复用和组合。当一个类混入(with)多个特质时,可能会出现方法冲突的情况。为了解决这种冲突,Scala 引入了最右优先原则&#…...

C++入门——引用
C入门——引用 一、引用的概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。这就好比《水浒传》中,一百零八位好汉都有自己的绰号。通过&…...

深度学习模型组件之优化器—Lookahead:通过“快慢”两组优化器协同工作,提升训练稳定性
深度学习模型组件之优化器—Lookahead:通过“快/慢”两组优化器协同工作,提升训练稳定性 文章目录 深度学习模型组件之优化器—Lookahead:通过“快/慢”两组优化器协同工作,提升训练稳定性1. Lookahead优化器的背景2. Lookahead优…...

K8s 1.27.1 实战系列(五)Namespace
Kubernetes 1.27.1 中的 Namespace(命名空间)是集群中实现多租户资源隔离的核心机制。以下从功能、操作、配置及实践角度进行详细解析: 一、核心功能与特性 1、资源隔离 Namespace 将集群资源划分为逻辑组,实现 Pod、Service、Deployment 等资源的虚拟隔离。例如,…...

Spring Boot整合ArangoDB教程
精心整理了最新的面试资料和简历模板,有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 一、环境准备 JDK 17Maven 3.8Spring Boot 3.2ArangoDB 3.11(本地安装或Docker运行) Docker启动ArangoDB docker run -d --name ar…...

虚幻基础:动画层接口
文章目录 动画层:动画图表中的函数接口:名字,没有实现。动画层接口:由动画蓝图实现1.动画层可直接调用实现功能2.动画层接口必须安装3.动画层默认使用本身实现4.动画层也可使用其他动画蓝图实现,但必须在角色蓝图中关联…...

从 GitHub 批量下载项目各版本的方法
一、脚本功能概述 这个 Python 脚本的主要功能是从 GitHub 上下载指定项目的各个发布版本的压缩包(.zip 和 .tar.gz 格式)。用户需要提供两个参数:一个是包含项目信息的 CSV 文件,另一个是用于保存下载版本信息的 CSV 文件。脚本…...

一、对lora_sx1278v1.2模块通信记录梳理
一、通信测试: 注意: 1、检查供电是否满足。 2、检测引脚是否松动或虚焊。 3、检测触发是否能触发。 引脚作用: SPI:通信(仅作一次初始化,初始化后会进行模块通信返回测试,返回值和预定值相否即…...

Java在word中动态增加表格行并写入数据
SpringBoot项目中在word中动态增加表格行并写入数据,不废话,直接上配置和代码: 模板内容如下图所示: 模板是一个空word表格即可,模板放在resources下的自定义目录下,如下图示例。 实体类定义如下: @Data @AllArgsConstructor @NoArgsConstructor public class Person …...

[通讯协议]232通信
RS-232 简介 RS-232是一种广泛应用的串行通信接口标准,使用的协议就是串口协议。 通信能力 单端信号传输:信号以地线为参考,逻辑“1”为-3V至-15V,逻辑“0”为3V至15V。点对点通信:仅支持两个设备之间的通信&#x…...

Refreshtoken 前端 安全 前端安全方面
网络安全 前端不需要过硬的网络安全方面的知识,但是能够了解大多数的网络安全,并且可以进行简单的防御前两三个是需要的 介绍一下常见的安全问题,解决方式,和小的Demo,希望大家喜欢 网络安全汇总 XSSCSRF点击劫持SQL注入OS注入请求劫持DDOS 在我看来,前端可以了解并且防御前…...

EasyRTC嵌入式音视频通话SDK:基于ICE与STUN/TURN的实时音视频通信解决方案
在当今数字化时代,实时音视频通信技术已成为人们生活和工作中不可或缺的一部分。无论是家庭中的远程看护、办公场景中的远程协作,还是工业领域的远程巡检和智能设备的互联互通,高效、稳定的通信技术都是实现这些功能的核心。 EasyRTC嵌入式音…...

AI终章.展望未来2026-2030年预测与DeepSeek的角色
人工智能(AI)近年来发展迅速,正在改变行业、商业模式以及我们与技术互动的方式。展望2026-2030年,预计在多模态AI、自主代理和自动化驱动的新职业创造方面将出现革命性发展。本章将探讨这些趋势,以及DeepSeek将如何在这…...

PyTorch系列教程:编写高效模型训练流程
当使用PyTorch开发机器学习模型时,建立一个有效的训练循环是至关重要的。这个过程包括组织和执行对数据、参数和计算资源的操作序列。让我们深入了解关键组件,并演示如何构建一个精细的训练循环流程,有效地处理数据处理,向前和向后…...

【面试】Zookeeper
Zookeeper 1、ZooKeeper 介绍2、znode 节点里面的存储3、znode 节点上监听机制4、ZooKeeper 集群部署5、ZooKeeper 选举机制6、何为集群脑裂7、如何保证数据一致性8、讲一下 zk 分布式锁实现原理吧9、Eureka 与 Zk 有什么区别 1、ZooKeeper 介绍 ZooKeeper 的核心特性 高可用…...

电力系统中各参数的详细解释【智能电表】
一、核心电力参数 电压 (Voltage) 单位:伏特(V) 含义:电势差,推动电流流动的动力 类型:线电压(三相系统)、相电压,如220V(家用)或380Vÿ…...

前端系统测试(单元、集成、数据|性能|回归)
有关前端测试的面试题 系统测试 首先,功能测试部分。根据资料,单元测试是验证最小可测试单元的正确性,比如函数或组件。都提到了单元测试的重要性,强调其在开发早期发现问题,并通过自动化提高效率。需要整合我搜索到的资料中的观点,比如单元测试的方法(接口测试、路径覆…...

软件开发过程总揽
开发模型 传统开发模型 瀑布模型 #mermaid-svg-yDNBSwh3gDYETWou {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-yDNBSwh3gDYETWou .error-icon{fill:#552222;}#mermaid-svg-yDNBSwh3gDYETWou .error-text{fill:#…...

VBA第二十期 VBA最简单复制整张表格Cells的用法
前面讲过复制整张表格的方法,使用语句Workbooks("实例.xlsm").Sheets("表格1").Copy Workbooks(wjm).Sheets(1)实现,这里用我们熟悉的Cells属性也可以实现整表复制。实例如下: Sheets("全部").Activate Cells…...

Redis为什么要自定义序列化?如何实现自定义序列化器?
在 Redis中,通常会使用自定义序列化器,那么,Redis为什么需要自定义序列化器,该如何实现它? 1、为什么需要自定义序列化器? 整体来说,Redis需要自定义序列化器,主要有以下几个原因&…...

Matlab:矩阵运算篇——矩阵数学运算
目录 1.矩阵的加法运算 实例——验证加法法则 实例——矩阵求和 实例——矩阵求差 2.矩阵的乘法运算 1.数乘运算 2.乘运算 3.点乘运算 实例——矩阵乘法运算 3.矩阵的除法运算 1.左除运算 实例——验证矩阵的除法 2.右除运算 实例——矩阵的除法 ヾ( ̄…...

手写一个Tomcat
Tomcat 是一个广泛使用的开源 Java Servlet 容器,用于运行 Java Web 应用程序。虽然 Tomcat 本身功能强大且复杂,但通过手写一个简易版的 Tomcat,我们可以更好地理解其核心工作原理。本文将带你一步步实现一个简易版的 Tomcat,并深…...

开发ai模型最佳的系统是Ubuntu还是linux?
在 AI/ML 开发中,Ubuntu 是更优选的 Linux 发行版,原因如下: 1. 开箱即用的 AI 工具链支持 Ubuntu 预装了主流的 AI 框架(如 TensorFlow、PyTorch)和依赖库,且通过 apt 包管理器可快速部署开发环境。 提…...

Scala 中生成一个RDD的方法
在 Scala 中,生成 RDD(弹性分布式数据集)的主要方法是通过 SparkContext(或 SparkSession)提供的 API。以下是生成 RDD 的常见方法: 1. 从本地集合创建 RDD 使用 parallelize 方法将本地集合(如…...

【redis】慢查询分析与优化
慢查询指在Redis中执行时间超过预设阈值的命令,其日志记录是排查性能瓶颈的核心工具。Redis采用单线程模型,任何耗时操作都可能阻塞后续请求,导致整体性能下降。 命令的执行流程 根据Redis的核心机制,命令执行流程可分为以下步骤…...