当前位置: 首页 > news >正文

Kafka---kafka概述和kafka基础架构

kafka概述和kafka基础架构


文章目录

  • kafka概述和kafka基础架构
  • Kafka定义
  • 消息队列
    • 传统消息队列应用场景
      • 缓存/消峰
      • 解耦
      • 异步通信
    • 消息队列的两种模式
      • 点对点模式
      • 发布/订阅模式
  • kafka基础架构
    • producer
    • Consumer
    • Consumer Group(CG)
    • Broker
    • Topic
    • Partition
    • Replica
    • Leader
    • Follower


Kafka定义

传统定义

Kafka是一个分布式的基于发布/订阅模式的消息队列(Message Queue),主要应用于大数据实时处理领域。

新定义

Kafka是一个开源的分布式事件流平台 (Event Streaming Platform),被数千家公司用于高性能数据管道、流分析、数据集成和关键任务应用。

消息队列

常见的消息队列Kafka、ActiveMQ 、RabbitMQ 、RocketMQ

在大数据场景主要采用 Kafka 作为消息队列。在 JavaEE 开发中主要采用 ActiveMQ、RabbitMQ、RocketMQ

传统消息队列应用场景

传统的消息队列的主要应用场景包括:缓存/消峰、解耦和异步通信

缓存/消峰

有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况

在这里插入图片描述
在这里插入图片描述

解耦

解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束

在这里插入图片描述

异步通信

异步通信:允许用户把一个消息放入队列,但并不立即处理它,然后在需要的时候再去处理它们

同步
在这里插入图片描述

异步
在这里插入图片描述

消息队列的两种模式

点对点模式

消费者主动拉取数据,消息收到后清除消息

生产者生产消息放入消息队列,消费者主动拉取消息消费,消息收到后清除消息
在这里插入图片描述

发布/订阅模式

可以有多个topic主题(浏览、点赞、收藏、评论等)
消费者消费数据之后,不删除数据
每个消费者相互独立,都可以消费到数据

生产者可以产生多个主题的消息,消费者拉取自己需要的数据进行消费,消息收到并不删除数据,每个消费者相互独立,都可以消费到数据
在这里插入图片描述

kafka基础架构

在这里插入图片描述

producer

消息生产者,就是向 Kafka broker 发消息的客户端

Consumer

消息消费者,向 Kafka broker 取消息的客户端

Consumer Group(CG)

消费者组,由多个 consumer 组成

消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费
消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者

Broker

一台 Kafka 服务器就是一个 broker

一个集群由多个 broker 组成。一个broker 可以容纳多个 topic

Topic

可以理解为一个队列,生产者和消费者面向的都是一个 topic

主题是已发布消息的类别名称,发布和订阅数据必须指定主题
主题的副本数量不大于Brokers个数

Partition

为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 partition,每个 partition 是一个序的队列

每个partition对应一个文件夹<topic_name>-<partition_id>,每个partition被视为一个有序的日志文件(LogSegment)
每个partition都有一个Leader,0或多个Followers

Replica

副本

一个 topic 的每个分区都有若干个副本,一个 Leader 和若干个Follower
Relication策略是基于partition,而不是Topic

Leader

每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是 Leader

Follower

每个分区多个副本中的“从”,实时从 Leader 中同步数据,保持和Leader 数据的同步。Leader 发生故障时,某个 Follower 会成为新的 Leader

相关文章:

Kafka---kafka概述和kafka基础架构

kafka概述和kafka基础架构 文章目录kafka概述和kafka基础架构Kafka定义消息队列传统消息队列应用场景缓存/消峰解耦异步通信消息队列的两种模式点对点模式发布/订阅模式kafka基础架构producerConsumerConsumer Group&#xff08;CG&#xff09;BrokerTopicPartitionReplicaLead…...

《JavaEE初阶》多线程基础

《JavaEE初阶》多线程基础 文章目录《JavaEE初阶》多线程基础前言:多线程的概念简单创建线程并运行:简述Thread中run方法与start方法的区别创建线程的几种方法:探讨串行执行与并行执行的执行时间多线程的使用场景:Thread类简单介绍:构造方法:获取线程的常见属性:线程的常用方法…...

技术分享 | OMS 初识

作者&#xff1a;高鹏 DBA&#xff0c;负责项目日常问题排查&#xff0c;广告位长期出租 。 本文来源&#xff1a;原创投稿 *爱可生开源社区出品&#xff0c;原创内容未经授权不得随意使用&#xff0c;转载请联系小编并注明来源。 本文主要贡献者&#xff1a;进行OMS源码分析的…...

【Elastic (ELK) Stack 实战教程】10、ELK 架构升级-引入消息队列 Redis、Kafka

目录 一、ELK 架构面临的问题 1.1 耦合度过高 1.2 性能瓶颈 二、ELK 对接 Redis 实践 2.1 配置 Redis 2.1.1 安装 Redis 2.1.2 配置 Redis 2.1.3 启动 Redis 2.2 配置 Filebeat 2.3 配置 Logstash 2.4 数据消费 2.5 配置 kibana 三、消息队列基本概述 3.1 什么是…...

优先、双端队列-我的基础算法刷题之路(八)

本篇博客旨在整理记录自已对优先队列、双端队列的一些总结&#xff0c;以及刷题的解题思路&#xff0c;同时希望可给小伙伴一些帮助。本人也是算法小白&#xff0c;水平有限&#xff0c;如果文章中有什么错误之处&#xff0c;希望小伙伴们可以在评论区指出来&#xff0c;共勉 &…...

Python3 os.symlink() 方法、Python 质数判断

Python3 os.symlink() 方法 概述 os.symlink() 方法用于创建一个软链接。 语法 symlink()方法语法格式如下&#xff1a; os.symlink(src, dst)参数 src -- 源地址。 dst -- 目标地址。 返回值 该方法没有返回值。 实例 以下实例演示了 symlink() 方法的使用&#xff1…...

P1972 [SDOI2009] HH的项链

[SDOI2009] HH的项链 题目描述 HH 有一串由各种漂亮的贝壳组成的项链。HH 相信不同的贝壳会带来好运&#xff0c;所以每次散步完后&#xff0c;他都会随意取出一段贝壳&#xff0c;思考它们所表达的含义。HH 不断地收集新的贝壳&#xff0c;因此&#xff0c;他的项链变得越来…...

​力扣解法汇总1026. 节点与其祖先之间的最大差值

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;力扣 描述&#xff1a; 给定二叉树的根节点 root&#xff0c;找出存在于 不同 节点 A 和 B 之间的最大值…...

010:Mapbox GL移动鼠标mousemove,显示坐标信息

第010个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+mapbox中移动鼠标mousemove,显示坐标信息。 直接复制下面的 vue+mapbox源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方式示例源代码(共81行)相关API参考:专栏目标示例效果 配置方式 1)查看基础…...

【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

百度暑期实习 C++ 一面

1.数组 链表 数组是一种线性数据结构&#xff0c;其中相同类型的元素连续存储在一段内存中&#xff0c;并且可以通过索引来访问每个元素。数组的优点是随机访问元素非常快速&#xff0c;但缺点是插入或删除元素可能需要移动其他元素。 链表也是一种线性数据结构&#xff0c;但…...

计算机网络第一章(概述)【湖科大教书匠】

1. 各种网络 网络(Network)由若干**结点(Node)和连接这些结点的链路(Link)**组成多个网络还可以通过路由器互连起来&#xff0c;这样就构成了一个覆盖范围更大的网络&#xff0c;即互联网(互连网)。因此&#xff0c;互联网是"网络的网络(Network of Networks)"**因特…...

【JS】vis.js使用之vis-timeline使用攻略,vis-timeline在vue3中实现时间轴、甘特图

vis.js使用之vis-timeline使用攻略&#xff0c;vis-timeline实现时间轴、甘特图1、vis-timeline简介2、安装插件及依赖3、简单示例4、疑难问题集合1. 中文zh-cn本地化2. 关于自定义class样式无法被渲染3. 关于双向数据绑定vis.js是一个基于浏览器的可视化库&#xff0c;它提供了…...

机器学习——数据处理

机器学习简介 机器学习是人工智能的一个实现途径深度学习是机器学习的一个方法发展而来 机器学习&#xff1a;从数据中自动分析获得模型&#xff0c;并利用模型对未知数据进行预测。 数据集的格式&#xff1a; 特征值目标值 比如上图中房子的各种属性是特征值&#xff0c;然…...

多种文字翻译软件-翻译常用软件

整篇文档翻译软件 整篇文档翻译软件是一种实现全文翻译的自动翻译工具&#xff0c;它能够快速、准确地将整篇文档的内容翻译成目标语言。与单词、句子翻译不同&#xff0c;整篇文档翻译软件不仅需要具备准确的语言识别和翻译技术&#xff0c;还需要考虑上下文语境和文档格式等多…...

Baumer工业相机堡盟工业相机如何通过BGAPI SDK将相机图像数据用二进制的方式保存到本地(C++)

Baumer工业相机堡盟工业相机如何通过BGAPI SDK将相机图像数据用二进制的方式保存到本地&#xff08;C&#xff09;Baumer工业相机Baumer工业相机将图像保存为二进制图像的技术背景代码分析第一步&#xff1a;先转换Byte*图像为二进制图像第二步&#xff1a;在回调函数里进行Buf…...

JavaScript模块的导出和导入之export和module.exports的区别

export和module.exports (需要前面的export没有“s”,后面的module.exports 有“s”) 使用两者根本区别是 **exports **返回的是模块函数 **module.exports **返回的是模块对象本身&#xff0c;返回的是一个类 使用上的区别是exports的方法可以直接调用module.exports需要new…...

基于朴素贝叶斯分类器的钞票真伪识别模型

基于朴素贝叶斯分类器的钞票真伪识别模型 内容 本实验通过实现钞票真伪判别案例来展开学习朴素贝叶斯分类器的原理及应用。 本实验的主要技能点&#xff1a; 1、 朴素贝叶斯分类器模型的构建 2、 模型的评估与预测 3、 分类概率的输出 源码下载 环境 操作系统&#xf…...

【Python】【进阶篇】二十二、Python爬虫的BS4解析库

目录二十二、Python爬虫的BS4解析库22.1 BS4下载安装22.2 BS4解析对象22.3 BS4常用语法1) Tag节点22.4 遍历节点22.5 find_all()与find()1) find_all()2) find()22.6 CSS选择器二十二、Python爬虫的BS4解析库 Beautiful Soup 简称 BS4&#xff08;其中 4 表示版本号&#xff0…...

UDS统一诊断服务【五】诊断仪在线0X3E服务

文章目录前言一、诊断仪在线服务介绍二、数据格式2.1&#xff0c;请求报文2.2&#xff0c;子功能2.3&#xff0c;响应报文前言 本文介绍UDS统一诊断服务的0X3E服务&#xff0c;希望能对你有所帮助 一、诊断仪在线服务介绍 诊断仪在线服务比较简单&#xff0c;其功能就是告诉服…...

我的创作纪念日:Unity CEO表示生成式AI将是Unity近期发展重点,发布神秘影片预告

PICK 未来的AI技术将会让人类迎来下一个生产力变革&#xff0c;这其中也包括生成型AI的突破性革新。各大公司也正在竞相推出AIGC工具&#xff0c;其中微软的Copilot、Adobe的Firefly、Github的chatGPT等引起了人们的关注。然而&#xff0c;游戏开发领域似乎还没有一款真正针对性…...

秩亏自由网平差的直接解法

目录 一、原理概述二、案例分析三、代码实现四、结果展示一、原理概述 N = B T P B N=B^TPB N=<...

大数据开发必备面试题Spark篇合集

1、Hadoop 和 Spark 的相同点和不同点&#xff1f; Hadoop 底层使用 MapReduce 计算架构&#xff0c;只有 map 和 reduce 两种操作&#xff0c;表达能力比较欠缺&#xff0c;而且在 MR 过程中会重复的读写 hdfs&#xff0c;造成大量的磁盘 io 读写操作&#xff0c;所以适合高时…...

C ++匿名函数:揭开C++ Lambda表达式的神秘面纱

潜意识编程&#xff1a;揭秘C Lambda表达式的神秘面纱 Subconscious Programming: Unveiling the Mystery of C Lambda Expressions 引言&#xff1a;Lambda表达式的魅力 (The Charm of C Lambda Expressions)Lambda表达式简介与基本概念 (Introduction and Basic Concepts of …...

AOP使用场景记录总结(缓慢补充更新中)

测试项目结构: 目前是测试两个日志记录和 代码的性能测试 后面如果有其他的应用场景了在添加.其实一中就包括了二,但是没事,多练一遍 1. 日志记录 比如说对service层中的所有增加,删除,修改方法添加日志, 记录内容包括操作的时间 操作的方法, 方法的参数, 方法所在的类, 方法…...

FPGA基于XDMA实现PCIE X4的HDMI视频采集 提供工程源码和QT上位机程序和技术支持

目录1、前言2、我已有的PCIE方案3、PCIE理论4、总体设计思路和方案5、vivado工程详解6、驱动安装7、QT上位机软件8、上板调试验证9、福利&#xff1a;工程代码的获取1、前言 PCIE&#xff08;PCI Express&#xff09;采用了目前业内流行的点对点串行连接&#xff0c;比起 PCI …...

ArcGIS、ENVI、InVEST、FRAGSTATS等多技术融合提升环境、生态、水文、土地、土壤、农业、大气等领域的数据分析

查看原文>>>ArcGIS、ENVI、InVEST、FRAGSTATS等多技术融合提升环境、生态、水文、土地、土壤、农业、大气等领域的数据分析 目录 专题一、空间数据获取与制图 专题二、ArcGIS专题地图制作 专题三、空间数据采集与处理 专题四、遥感数据处理与应用 专题五、DEM数据…...

怎么找回回收站里已经删除的文件

作为忙忙碌碌的打工人&#xff0c;电脑办公是在所难免的&#xff0c;而将使电脑存储着大量的数据文件&#xff0c;不少小伙伴都养成了定期清理电脑的习惯。而清理简单快捷的方法&#xff0c;无疑是直接把文件拖进回收站里。再一键清空&#xff0c;清理工作就完成了。但如果发现…...

Spring Boot、Cloud、Alibaba 版本说明

Spring Boot、Cloud、Alibaba 版本说明 一、毕业版本依赖关系(推荐使用) 由于 Spring Boot 3.0&#xff0c;Spring Boot 2.7~2.4 和 2.4 以下版本之间变化较大&#xff0c;目前企业级客户老项目相关 Spring Boot 版本仍停留在 Spring Boot 2.4 以下&#xff0c;为了同时满足存…...

软件测试入门第一步:编写测试报告

什么是测试报告&#xff1f; 1、说明&#xff1a;是指把测试的过程和结果写成文档&#xff0c;对发现的问题和缺陷进行分析&#xff0c;为纠正软件的存在的质量问题提供依据&#xff0c;同时为软件验收和交付打下基础。 ps. 【测试过程和测试结果的分析报告&#xff0c;以及上线…...