当前位置: 首页 > news >正文

Python综合案例-小费数据集的数据分析(详细思路+源码解析)

目录

1. 请导入相应模块并获取数据。导入待处理数据tips.xls,并显示前5行。

2、分析数据

 3.增加一列“人均消费”

4查询抽烟男性中人均消费大于5的数据

 5.分析小费金额和消费总额的关系,小费金额与消费总额是否存在正相关关系。画图观察。

6分析男女顾客哪个更慷慨,就是分组看看男性还是女性的小费平均水平更高

7.分析日期和小费的关系,请绘制直方图。

8、绘图分析性别+抽烟的组合对慷慨度的影响

 9.绘图分析聚餐时间段与小费数额的关系

总结

 


本实训主要对小费数据进行数据的分析与可视化,用到的数据放在文件中。


1. 请导入相应模块并获取数据。导入待处理数据tips.xls,并显示前5行。

# 导入相应模块
import pandas as pd
import matplotlib.pyplot as plt# 导入数据并显示前5行
tips_data = pd.read_excel('tips.xls')
print(tips_data.head())


2、分析数据

1、查看数据的描述信息

2、修改列名为汉字(total_bill--消费总额,tip--小费,sex--性别,smoker--是否抽烟,day--星期,time--聚餐时间段,size--人数),并显示前5行数据。

# 导入数据并显示描述信息
print(tips_data.describe())# 修改列名并显示前5行
tips_data.columns = ['消费总额', '小费', '性别', '是否抽烟', '星期', '聚餐时间段', '人数']
print(tips_data.head())


 3.增加一列“人均消费”

# 导入数据并增加“人均消费”列
tips_data['人均消费'] = tips_data['消费总额'] / tips_data['人数']
print(tips_data.head())


4查询抽烟男性中人均消费大于5的数据

# 导入数据并查询抽烟男性中人均消费大于5的数据
smoking_male = tips_data[(tips_data['是否抽烟']=='Yes') & (tips_data['性别']=='Male')]
result = smoking_male[smoking_male['消费总额'] / smoking_male['人数'] > 5]
print(result)


 5.分析小费金额和消费总额的关系,小费金额与消费总额是否存在正相关关系。画图观察。

# 导入数据并绘制散点图
x = tips_data['消费总额']
y = tips_data['小费']
plt.scatter(x, y)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show()

可以看出,小费金额似乎随着消费总额的增加而变大,这表明小费金额和消费总额存在一定程度的正相关关系,但不是非常强烈的正相关关系。


6分析男女顾客哪个更慷慨,就是分组看看男性还是女性的小费平均水平更高

# 导入数据并计算男女顾客的小费平均值
gender_tip_mean = tips_data.groupby('性别')['小费'].mean()
print(gender_tip_mean)
 

可以看出,在这个数据集中,男性顾客的小费平均水平略高于女性顾客。因此,从这份数据来看,男性顾客可能更慷慨一些。


7.分析日期和小费的关系,请绘制直方图。

# 导入数据并绘制直方图
grouped = tips_data.groupby('星期')['小费']
hist_data = [grouped.get_group(day) for day in grouped.groups]
plt.hist(hist_data, bins=10, histtype='bar', stacked=True)
plt.legend(grouped.groups.keys())
plt.xlabel('Tip amount')
plt.ylabel('Frequency')
plt.show()

 


8、绘图分析性别+抽烟的组合对慷慨度的影响

# 导入数据并绘制箱线图
fig, ax = plt.subplots()
ax.boxplot([tips_data[tips_data['性别']=='Male'][tips_data['是否抽烟']=='Yes']['小费'],tips_data[tips_data['性别']=='Male'][tips_data['是否抽烟']=='No']['小费'],tips_data[tips_data['性别']=='Female'][tips_data['是否抽烟']=='Yes']['小费'],tips_data[tips_data['性别']=='Female'][tips_data['是否抽烟']=='No']['小费']],labels=['Male smoker', 'Male non-smoker', 'Female smoker', 'Female non-smoker'])
plt.xlabel('Gender and smoking')
plt.ylabel('Tip amount')
plt.title('Effect of gender and smoking on tipping behavior')
plt.show()

 

可以看出,男性吸烟者给出的小费位于所有组合中的最高水平,而女性非吸烟者给出的小费位于所有组合中的最低水平。因此,在这个数据集中,男性吸烟者可能更加慷慨,而女性非吸烟者可能不太慷慨。 


 9.绘图分析聚餐时间段与小费数额的关系

# 导入数据并绘制散点图
colors = ['blue', 'green', 'red', 'purple']
grouped = tips_data.groupby('聚餐时间段')
for i, (key, group) in enumerate(grouped):plt.scatter(group['消费总额'], group['小费'], label=key, color=colors[i])
plt.xlabel('Total bill amount')
plt.ylabel('Tip amount')
plt.title('Relationship between meal time and tipping behavior')
plt.legend()
plt.show()

 

 可以看出,午餐和晚餐的小费数额大致呈正相关,而早餐和夜宵的小费数额较为稀疏,无明显的相关性。因此,从这份数据来看,午餐和晚餐似乎更有可能得到较高的小费水平。

总结

这是一个数据分析和可视化的过程,其主要步骤如下:

  1. 导入所需的模块,包括Pandas和Matplotlib。

  2. 使用Pandas读取并处理数据集,包括修改列名、计算人均消费、查询特定条件下的数据等等。

  3. 利用Matplotlib绘制各种类型的图表,包括散点图、直方图、箱线图等等,从中发现顾客的一些特征与小费数额之间的关系。

  4. 对绘制的图表进行美化和定制,包括添加标签、标题、轴标签、图例等等。

  5. 考虑实际情况和边界条件,确保代码能够稳定、高效地工作。

这个过程涉及到多种数据分析和可视化技术,能够帮助我们更好地理解数据,发现其中的规律和趋势,为进一步的研究和决策提供参考。同时也需要注意数据质量和代码效率,避免出现意想不到的问题。

源代码下载:

visualization.py · 蒋言希/小蒋同学的CSDN - Gitee.comhttps://gitee.com/jiang-yanxi123/xiaojiangs---csdn/blob/master/visualization.py

相关文章:

Python综合案例-小费数据集的数据分析(详细思路+源码解析)

目录 1. 请导入相应模块并获取数据。导入待处理数据tips.xls,并显示前5行。 2、分析数据 3.增加一列“人均消费” 4查询抽烟男性中人均消费大于5的数据 5.分析小费金额和消费总额的关系,小费金额与消费总额是否存在正相关关系。画图观察。 6分析男女顾…...

软件安全测试

软件安全性测试包括程序、网络、数据库安全性测试。根据系统安全指标不同测试策略也不同。 1.用户程序安全的测试要考虑问题包括: ① 明确区分系统中不同用户权限; ② 系统中会不会出现用户冲突; ③ 系统会不会因用户的权限的改变造成混乱; ④ 用户登陆密码是否…...

Scala模式匹配

Scala中有一个非常强大的模式匹配机制,应用也非常广泛, 例如: 判断固定值 类型查询 快速获取数据 简单模式匹配 一个模式匹配包含了一系列备选项,每个备选项都开始于关键字 case。且每个备选项都包含了一个模式及一到多个表达式。箭头符号 > 隔开…...

银行数仓分层架构

一、为什么要对数仓分层 实现好分层架构,有以下好处: 1清晰数据结构: 每一个数据分层都有对应的作用域,在使用数据的时候能更方便的定位和理解。 2数据血缘追踪: 提供给业务人员或下游系统的数据服务时都是目标数据&…...

Go并发编程的学习代码示例:生产者消费者模型

文章目录 前言代码仓库核心概念main.go(有详细注释)结果总结参考资料作者的话 前言 Go并发编程学习的简单代码示例:生产者消费者模型。 代码仓库 yezhening/Programming-examples: 编程实例 (github.com)Programming-examples: 编程实例 (g…...

求a的n次幂

文章目录 求a的n次幂程序设计程序分析求a的n次幂 【问题描述】要求利用书上介绍的从左至右二进制幂算法求a的n次幂; 【输入形式】输入两个正整数,一个是a,一个是n,中间用空格分开 【输出形式】输出一个整数 【样例输入】2 10 【样例输出】1024 【样例输入】3 4 【样例输出】…...

word脚标【格式:第X页(共X页)】

不得不吐槽一下这个论文,真的我好头疼啊。我又菜又不想改。但是还是得爬起来改 (是谁大半夜不能睡觉加班加点改格式啊) 如何插入页码。 格式、要求如下: 操作步骤: ①双击页脚,填好格式,宋体小四和居中都…...

Linux --- 软件安装、项目部署

一、软件安装 1.1、软件安装方式 在Linux系统中,安装软件的方式主要有四种,这四种安装方式的特点如下: 1.2、安装JDK 上述我们介绍了Linux系统软件安装的四种形式,接下来我们就通过第一种(二进制发布包)形式来安装 JDK。 JDK…...

MATLAB应用笔记

其他 1、NaN值 MATLAB判断数据是否为NaN可以直接使用函数:isnan() 三、数据分析 1、相关性 均值、方差、协方差、标准差、相关系数 mean() %均值 nanmean()%去除NAN值求均值 var() %方差 cov() %协方差 std() %标准差 corrcoef(B,b) %R 相关系数plot()…...

ERTEC200P-2 PROFINET设备完全开发手册(6-2)

6.2 诊断与报警实验 首先确认固件为 App1_STANDARD, 将宏定义改为: #define EXAMPL_DEV_CONFIG_VERSION 1 参照第6节的内容,编译和调试固件,并在TIA Portal 中建立RT项目。启动固件后,TIA Portal 切换到在线,可以看…...

算法套路八——二叉树深度优先遍历(前、中、后序遍历)

算法套路八——二叉树深度优先遍历(前、中、后序遍历) 算法示例:LeetCode98:验证二叉搜索树 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左子树只…...

视频批量剪辑:如何给视频添加上下黑边并压缩视频容量。

视频太多了,要如何进行给视频添加上下黑边并压缩视频容量?今天就由小编来教教大家要如何进行操作,感兴趣的小伙伴们可以来看看。 首先,我们要进入视频剪辑高手主页面,并在上方板块栏里选择“批量剪辑视频”板块&#…...

那些你需要知道的互联网广告投放知识

作为一个合格的跨境电商卖家,我们除了有好的产品之外,还要知道怎么去营销我们自己的产品。没有好的推广,即使你的产品有多好别人也是很难看得到的。今天龙哥就打算出一期基础的互联网广告投放科普,希望可以帮到各位增加多一点相关…...

【hello Linux】进程程序替换

目录 1. 程序替换的原因 2. 程序替换原理 3. 替换函数 4. 函数解释 5. 命名理解 6.简陋版shell的制作 补充: Linux🌷 1. 程序替换的原因 进程自创建后只能执行该进程对应的程序代码,那么我们若想让该进程执行另一个“全新的程序”这 便要用…...

【网络应用开发】实验4——会话管理

目录 会话管理预习报告 一、实验目的 二、实验原理 三、实验预习内容 1. 什么是会话,一个会话的生产周期从什么时候,到什么时候结束? 2. 服务器是如何识别管理属于某一个特定客户的会话的? 3. 什么是Cookie,它的…...

Linux服务器怎么分区

Linux服务器怎么分区 我是艾西,linux系统除了从业某个行业经常要用到的程序员比较熟悉,对于小白或只会用Windows系统的小伙伴还是会比较难上手的。今天艾西简单的跟大家聊聊linux系统怎么分区,让身为小白的你也能一眼看懂直接上手操作感受程序…...

传统机器学习(四)聚类算法DBSCAN

传统机器学习(四)聚类算法DBSCAN 1.1 算法概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。 该算法将具有足够密度的区域划分为簇,并在…...

“华为杯”研究生数学建模竞赛2020年-【华为杯】A题:ASIC 芯片上的载波恢复 DSP 算法设计与实现(附获奖论文及matlab代码实现)

目录 摘 要: 1.问题重述 1.1 问题背景 1.2 问题提出 1.3 研究基础 2.模型假设和已知...

1043.分隔数组以得到最大和

题目: 给你一个整数数组 arr,请你将该数组分隔为长度 最多 为 k 的一些(连续)子数组。分隔完成后,每个子数组的中的所有值都会变为该子数组中的最大值。 返回将数组分隔变换后能够得到的元素最大和。本题所用到的测试…...

微服务治理框架(Istio)的认证服务与访问控制

本博客地址:https://security.blog.csdn.net/article/details/130152887 一、认证服务 1.1、基于JWT的认证 在微服务架构下,每个服务是无状态的,由于服务端需要存储客户端的登录状态,因此传统的session认证方式在微服务中不再适…...

数据结构 | 排序 - 总结

排序的方式 排序的稳定性 什么是排序的稳定性? 不改变相同数据的相对顺序 排序的稳定性有什么意义? 假定一个场景: 一组成绩:100,88,98,98,78,100(按交卷顺序…...

crontab -e 系统定时任务

crontab -e解释 crontab 是由 “cron” 和 “table” 两个单词组成的缩写。其中,“cron” 是一个在 Linux 和类 Unix 操作系统中用于定时执行任务的守护进程,而 “table” 则是指一个表格或者列表,因此 crontab 就是一个用于配置和管理定时任…...

前后端交互系列之Axios详解(包括拦截器)

目录 前言一,服务器的搭建二,Axios的基本使用2.1 Axios的介绍及页面配置2.2 如何安装2.3 Axios的前台代码2.4 Axios的基本使用2.5 axios请求响应结果的结构2.6 带参数的axios请求2.7 axios修改默认配置 三,axios拦截器3.1 什么是拦截器3.2 拦…...

定时任务之时间轮算法

初识时间轮 我们先来考虑一个简单的情况,目前有三个任务A、B、C,分别需要在3点钟,4点钟和9点钟执行,可以把时间想象成一个钟表。 如上图中所示,我只需要把任务放到它需要被执行的时刻,然后等着时针转到这个…...

实验4 Matplotlib数据可视化

1. 实验目的 ①掌握Matplotlib绘图基础; ②运用Matplotlib,实现数据集的可视化; ③运用Pandas访问csv数据集。 2. 实验内容 ①绘制散点图、直方图和折线图,对数据进行可视化; ②下载波士顿数房价据集,并…...

【软件工程】为什么要选择软件工程专业?

个人主页:【😊个人主页】 文章目录 前言软件工程💻💻💻就业岗位👨‍💻👨‍💻👨‍💻就业前景🛩️🛩️🛩️工作环…...

5类“计算机”专业很吃香,人才缺口巨大,就业前景良好

说到目前最热门的专业,计算机绝对占有一席之地,是公认的发展前景好、人才缺口大的专业。有人称该专业人数如此众多,势必会导致人才饱和,但是从当前社会互联网发展的趋势来看,计算机专业在很长一段时间都是发展很好的专…...

数仓选型对比

1、数仓选型对比如下(先列举表格,后续逐个介绍) 数仓应用目标产品特点适用于 适用数据类型数据处理速度性能拓展 实施难度运维难度性能优化成本传统数仓(SQLServer、Oracle等关系型数据库)面向主题设计的,为 分析数据而设计基于Oracle、 SQLServer、MyS…...

二叉树的遍历(前序、中序、后序)Java详解与代码实现

递归遍历 前序,中序,后序 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, Tree…...

如何找出消耗CPU最多的线程?

如何找出消耗CPU最多的线程? 1.使用 top -c 找出所有当前进程的运行列表 top -c 2.按P(Shiftp)对所有进程按CPU使用率进行排序,找出消耗最高的线程PID ​​​ 显示Java进程 PID 为 136 的java进程消耗最 3.使用 top -Hp PID,查出里面消…...